浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
安其昌 (1988-), 男, 山西太原人, 博士研究生, 助理研究员。2011于中国科学技术大学获得学士学位。2014年于中国科学院大学获得硕士学位, 研究方向为大口径光机系统检测装调, E-mail:anjj@mail.ustc.edu.cn AN Qi-Chang, E-mail:anjj@mail.ustc.edu.cn
收稿日期:2016-07-20,
录用日期:2016-8-25,
纸质出版日期:2017-02-25
移动端阅览
安其昌, 张景旭, 杨飞, 等. 基于结构函数的大口径望远镜中频误差分配研究[J]. 光学精密工程, 2017,25(2):433-440.
Qi-Chang AN, Jing-xu ZHANG, Fei YANG, et al. On middle frequency error distribution of large telescope based on structure function[J]. Optics and precision engineering, 2017, 25(2): 433-440.
安其昌, 张景旭, 杨飞, 等. 基于结构函数的大口径望远镜中频误差分配研究[J]. 光学精密工程, 2017,25(2):433-440. DOI: 10.3788/OPE.20172402.0433.
Qi-Chang AN, Jing-xu ZHANG, Fei YANG, et al. On middle frequency error distribution of large telescope based on structure function[J]. Optics and precision engineering, 2017, 25(2): 433-440. DOI: 10.3788/OPE.20172402.0433.
为了更好地对于大口径望远镜中频误差进行评价与分配,本文引入了结构函数来进行研究。本文首先对于结构函数的基本性质进行了推导,并与传统的误差均方根(RMS)进行比较,表明了其表征不同尺度误差的能力。之后分析了系统波前在不同的评价尺度下的统计特性差异,得出在较小尺度下,系统的误差分布可以较好的服从正态分布,而随着尺度的增加(如大于100mm)会逐渐偏离正态分布的结论。然后根据结构函数的基本性质,提出了一种可以同时考虑诸多误差源的大口径望远镜中频误差分配方法。结合美国三十米望远镜(TMT)团队所提出的标准化点源敏感性(normalized Point Source Sensitivity,PSSn),建立起了由结构函数到标准化点源敏感性的换算关系,通过此方法来进行误差分配指标间的交叉验证以及与其他单元技术之间的对接。最后,根据本文所提出的方法,对于某大口径望远镜的主镜系统进行了误差分配,得到在大尺度均方根为25nm,粗糙度为1nm,中频尺度为250mm,大气相干长度为0.4m(检测环境)的要求下,该系统的结构函数满足要求,同时由要求结构函数所计算得到的PSSn=0.999 6大于由镜面数据直接得到的PSSn=0.999 5,同样满足要求。
To better evaluate and distribute the middle frequency errors of large telescope
structure function was put forward for such purposes in this paper. Firstly
we carried out a derivation in basic property of the structure function and compared it with traditional root mean square (RMS)
which indicates its capability of representing different-scale errors; secondly
conducted an analysis on the statistical property difference of system wavefront under different evaluation scales
which indicates that system error distribution can better follow the normalized distribution under small scale and tend to deviate from the normalized distribution with the scale increase (e.g.:a scale greater than 100 mm); then a method for middle frequency error distribution of large telescope that can simultaneously cover multiple error sources was put forward based on basic property of the structure function; established a conversion relation between the structure function and normalized point source sensitivity (PSSn) put forward by TMT team
and then completed the cross validation among the error distribution indexes and transfer of techniques; finally
carried out an error distribution in primary mirror system of a large telescope based on the method put forward in this paper
which indicates that structure function of the system can meet the requirements under the condition where large-scale RMS is 25nm
roughness is 1nm
middle frequency scale is 250 mm and atmospheric coherent length is 0.4 m (testing environment)
and that PSSn=0.9996 obtained from the structure function is greater than PSSn=0.999 5 directly obtained from mirror data can also meet the corresponding requirement.
FRIED D L.Statistics of a Geometric Representation of Wavefront Distortion[J]. J. Opt. Soc. Am., 1965, 55(11):1427.
YASHCHUK V V, FRANCK A D, IRICK S C, et al..Two-dimensional power spectral density measurements of x-ray optics with the Micro map interferometric microscope[J]. Proc. SPIE, 2005, 58580A.
ZHAO C, BURGE J.Orthonormal vector polynomials in a unit circle, Part Ⅱ:completing the basis set[J].Optics Express, 2008, 16(9):6586-6591.
陶小平.大口径反射镜加工机床在线检测高精度对准方法[J].中国光学, 2015, 8(6):1027-1034.
TAO X P. Precise alignment method of online optical testing for large-aperture mirror fabrication[J]. Chinese Optics, 2015, 8(6):1027-1034.
SRUDOLER OHADAR MFISHER, et al..Image resolution limits resulting from mechanical vibrations[J]. Opt. Eng., 1991, 30(5):577-589.
LAWRENCE D. Barr; John Fox; Gary A. Poczulp and Claude A. Roddier"Seeing studies on a 1.8-m mirror[J]. Proc. SPIE 1236, Advanced Technology Optical Telescopes IV, doi: 10.1117/12.19220. http://dx.doi.org/10.1117/12.19220.
刘祥意, 张景旭, 吴小霞, 等.环境对大口径SiC轻量化主镜视宁度的影响[J].光学精密工程, 2015, 23(3):776-783.
LIU X Y, ZHANG J X, WU X X, et al.. Affect of environment on mirror seeing of large-aperture SiC lightweight primary mirror[J]. Optics and Precision Engineering, 2015, 23(3):776-783.
BYOUNG J S, CARL N, GEORGE A, et al.Analysis of Normalized Point Source Sensitivity as a performance metric for the Thirty Meter Telescope[J]. Proc. SPIE 7017, Modeling, Systems Engineering, and Project Management for Astronomy Ⅲ, 2008.
王富国, 安其昌. 30m望远镜三镜镜面面形误差的斜率均方根评价[J].光学精密工程, 2014, 22(5):1171-1175.
WANG F G, AN Q CH. Evaluation of mirror surface figures for TMT based on SlopeRms[J]. Optics and Precision Engineering, 2014, 22(5):1171-1175.
SEO B J.Analysis of Normalized Point Source Sensitivity as a performance metric for the Thirty Meter Telescope[J]. Proc. SPIE, 2008, 7017.
苏燕芹, 王富国, 张景旭, 陈宝刚.基于时程分析的TMT三镜支撑系统地震分析[J].光学学报, 2013, 33(11):1112002.
SU Y Q, WANG F G, ZHANG J X, et al.. TMT M3 System Seismic Analysis Based on Time History Method[J]. Acta Optica Sinica, 2013, 33(11):1112002.
MACMYNOWSKI D G, ANDERSEN T.Wind buffeting of large telescopes[J].Applied Optics, 2010, 49(4):625-636.
MACMYNOWSKI D G, COLAVITA M M, SKIDMORE W, et al..Primary mirror dynamic disturbance models for TMT:Vibration and wind[J]. Proc. SPIE, 7738, (2010).
0
浏览量
103
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构