浏览全部资源
扫码关注微信
1.军械工程学院 无人机工程系, 河北 石家庄 050003
2.军械工程学院 弹药工程系, 河北 石家庄 050003
3.清华大学 精密仪器系, 北京 100084
李增彦 (1987-), 男, 河北石家庄人, 博士研究生, 2012年于军械工程学院获得硕士学位, 现为军械工程学院博士研究生, 主要从事无人机测控与飞行控制方面的研究。E-mail:Lizy_THU@163.com LI Zeng-yan, E-mail: Lizy_THU@163.com
[ "李小民 (1968-),男,河北保定人,博士,教授,博士生导师,主要从事无人机测控与飞行控制方面的研究。E-mail: lxmfy2000@263.net" ]
收稿日期:2016-09-23,
录用日期:2016-11-4,
纸质出版日期:2017-02-25
移动端阅览
李增彦, 李小民, 刘秋生, 等. 巡飞弹空中自适应快速初始姿态估计[J]. 光学精密工程, 2017,25(2):493-501.
Zeng-yan LI, Xiao-min LI, Qiu-sheng LIU, et al. Adaptive fast initial attitude estimation for inflight loitering munition[J]. Optics and precision engineering, 2017, 25(2): 493-501.
李增彦, 李小民, 刘秋生, 等. 巡飞弹空中自适应快速初始姿态估计[J]. 光学精密工程, 2017,25(2):493-501. DOI: 10.3788/OPE.20172402.0493.
Zeng-yan LI, Xiao-min LI, Qiu-sheng LIU, et al. Adaptive fast initial attitude estimation for inflight loitering munition[J]. Optics and precision engineering, 2017, 25(2): 493-501. DOI: 10.3788/OPE.20172402.0493.
为了解决巡飞弹空中上电后在无参考姿态条件下的初始姿态确定问题,采用低成本磁力计、陀螺仪和加速度计(MARG)传感器设计姿态航向参考系统(AHRS),并提出了一种自适应参考矢量权重的快速初始姿态估计(AFCF)算法。首先,提出了三轴传感器使用前的快速误差校准方法;然后,采用快速互补滤波算法进行姿态估计,分析了其权重函数对于初始姿态估计及收敛性等的影响;接着,提出自适应参考矢量权重及自适应姿态估计方法;最后,利用高精度MTI(Milliren Technologies,Inc)传感器数据对算法进行了验证,并在低成本MARG姿态航向参考系统中对算法进行了实现,对比了改进算法及扩展卡尔曼滤波(EKF)算法的性能。实验结果与分析表明:动态条件下采用MTI传感器数据,改进算法能够在初始时刻收敛,比快速互补滤波(FCF)算法提前约4s;解算精度约为±0.6°,初始时刻精度明显优于FCF;硬件测试则表明改进算法的处理时间为0.062ms,仅为EKF算法的1/9,解算精度约为±1.3°,能够满足姿态测量过程快速收敛、高精度、实时性等要求。
To solve the problem of initial attitude estimation for inflight loitering munition in the absence of reference attitude
a fast initial attitude estimation algorithm for adaptive reference vector weight (AFCF) was put forward based on the Attitude and Heading Reference System (AHRS) designed by adopting low-cost magnetic
angular rate and gravity MARG sensor. First of all
a fast error calibration method for three-axes sensor was put forward; Then
the attitude estimation was carried out by adopting the fast complementary filtering algorithm
and the impact of weighting function on initial attitude estimation and convergence was analyzed; subsequently the method for adaptive reference vector weight and adaptive attitude estimation was proposed; finally
high-precision MTI sensor data was used to verify the algorithm
then the algorithm was implemented in the low-cost MRAG AHRS
and performance of the improved algorithm was compared with that of the extended Kalman filter (EKF) algorithm. The experiment results and analysis show that the improved algorithm can achieve a convergence at the initial time when MTI sensor data is used under dynamic conditions
approximately 4s earlier than the fast complement filter (FCF) algorithm; the calculation precision is ±0.6°
and the initial precision is obviously better than FCF.Furthermore
the hardware test indicates that processing time for the improved algorithm is 0.062 ms
accounting for 1/9 of the EKF algorithm
with an approximately calculation precision of ±1.3°
which can meet the requirement of fast convergence
high precision and real-time during the attitude measurement.
刘畅.伞降式小型飞行器初始转平飞控制技术研究[D].北京:北京理工大学, 2014.
LIU CH. Technical research of initial state to level flight control for parachute-type small aircraft[D]. Beijing:Beijing Institute of Technology, 2014. (in Chinese)
张勇刚, 张云浩, 李宁.基于互补滤波器的MEMS/GPS/地磁组合导航系统[J].系统工程与电子技术, 2014, 36(11):2272-2279.
ZHANG Y G, ZHANG Y H, LI N. MEMS/GPS/geomagnetic integrated navigation system based on complementary filter[J]. Systems Engineering and Electronics, 2014, 36(11):2272-2279. (in Chinese)
张欣, 白越, 赵常均, 等.多旋翼姿态解算中的改进自适应扩展Kalman算法[J].光学精密工程, 2014, 22(12):3384-3390.
ZHANG X, BAI Y, ZHAO CH J, et al.. Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV[J]. Opt. Precision Eng., 2014, 22(12):3384-3390. (in Chinese)
韩辅君, 徐静, 宋世忠.基于低成本多传感器的自适应组合滤波[J].光学精密工程, 2011, 19(12):3007-3015.
HAN F J, XU J, SONG SH ZH. Adaptive attitude estimation filtering with low-cost multi-sensors for MAHRS[J]. Opt. Precision Eng., 2011, 19(12):3007-3015. (in Chinese)
贾瑞才.重力/地磁辅助的欧拉角无迹卡尔曼滤波姿态估计[J].光学精密工程, 2014, 22(12):3280-3286.
JIA R C. Attitude estimation based on gravity/magnetic assisted Euler angle UKF[J]. Opt. Precision Eng., 2014, 22(12):3280-3286. (in Chinese)
de MARINA H G, PEREDA F J, GIRON-SIERRA J M, et al.. UAV attitude estimation using unscented Kalman filter and TRIAD[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11):4465-4474.
TIAN Y, WEI H, TAN J. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2):254-264.
MADGWICK S O H, HARRISON A J L, VAIDYANATHAN A. Estimation of IMU and MARG orientation using a gradient descent algorithm[C]. 2011 IEEE International Conference on Rehabilitation Robotics (ICORR).
彭孝东, 张铁民, 李继宇, 等.基于传感器校正与融合的农用小型无人机姿态估计算法[J].自动化学报, 2015, 41(4):854-860.
PENG X D, ZHANG T M, LI J Y, et al.. Attitude estimation algorithm of agricultural small-UAV based on sensors fusion and calibration[J]. Acta Automatica Sinica, 2015, 41(4):854-860. (in Chinese)
WU J, ZHOU Z B, CHEN J J, et al.. Fast complementary filter for attitude estimation using low-cost MARG sensors[J]. IEEE Sensors Journal, 2016, 16(18):6697-7007.
MARKLEY F L. Fast quaternion attitude estimation from two vector measurements[J]. Journal of Guidance Control and Dynamics, 2002, 25(2):411-414.
刘兴川, 张盛, 李丽哲, 等.基于四元数的MARG传感器姿态测量算法[J].清华大学学报 (自然科学版), 2012, 52(5):627-631.
LIU X CH, ZHANG SH, LI L ZH, et al.. Quaternion-based algorithm for orientation estimation from MARG sensors[J]. J Tsinghua Univ (Sci & Tech), 2012, 52(5):627-631. (in Chinese)
赵国荣, 黄婧丽, 苏艳琴, 等.基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正[J].物理学报, 2015, 64(21):203-211.
ZHAO G R, HUANG J L, SU Y Q, et al.. Attitude estimation and three-axis magnetometer on-line calibration based on moving horizon estimation[J]. Acta Phys. Sin., 2015, 64(21):203-211. (in Chinese)
0
浏览量
99
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构