浏览全部资源
扫码关注微信
1.吉林大学 通信工程学院, 吉林 长春 130022
2.长春建筑学院 电气信息学院, 吉林 长春 130022
[ "李新波 (1980-), 男, 吉林省吉林市人, 博士, 吉林大学通信工程学院副教授, 2002年、2005年于吉林大学分别获得学士、硕士学位, 2007年至2008年在新加坡南洋理工大学作联合培养博士生, 2009年于吉林大学获得博士学位, 主要从事阵列信号处理、时频分析方面的研究。E-mail:cinple@126.com" ]
王猛 (1991-), 男, 河南信阳人, 2014年于中原工学院获得学士学位, 主要的研究方向阵列信号处理。E-mail:wangmeng1416@126.com WANG Meng, E-mail: wangmeng1416@126.com
收稿日期:2016-07-02,
录用日期:2016-9-19,
纸质出版日期:2017-02-25
移动端阅览
李新波, 石要武, 王猛, 等. 归一化循环相关超声回波时延估计[J]. 光学精密工程, 2017,25(2):547-554.
Xin-bo LI, Yao-wu SHI, Meng WANG, et al. Time-delay estimation of ultrasonic echo signal besed on normalized cyclic cross-correlation[J]. Optics and precision engineering, 2017, 25(2): 547-554.
李新波, 石要武, 王猛, 等. 归一化循环相关超声回波时延估计[J]. 光学精密工程, 2017,25(2):547-554. DOI: 10.3788/OPE.20172402.0547.
Xin-bo LI, Yao-wu SHI, Meng WANG, et al. Time-delay estimation of ultrasonic echo signal besed on normalized cyclic cross-correlation[J]. Optics and precision engineering, 2017, 25(2): 547-554. DOI: 10.3788/OPE.20172402.0547.
传统超声回波时延估计算法是在高斯噪声背景下展开研究的,而实际工况中超声回波不仅含有高斯噪声,还含有脉冲冲击噪声(
α
稳定分布噪声)等,这导致传统算法失效。为了解决上述问题,本文提出了一种针对混合噪声特别是包含噪声背景下的超声回波时延估计算法:归一化循环相关时延估计算法。首先,对归一化循环相关算法理论进行了简要的介绍。接着,对归一化循环相关时延估计算法进行了理论推导分析。然后,结合仿真分析,在相同
α
混合噪声情况下对传统循环相关和归一化循环相关时延估计进行比较。最后,在不同信噪比下,对归一化循环相关时延估计算法的估计性能进行了分析。通过对比实验发现,在噪声特征指数趋于1时,循环相关算法已不能估计出时延,而归一化循环相关算法的误差仍能保持在0.4
μ
s;且在-10dB信噪比下,归一化循环相关算法时延估计也能保持在10
μ
s误差范围内。本文所提归一化循环相关算法在混合噪声特别是包含
α
噪声情况下能够对超声回波时延进行精确估计,具有传统算法所不能比拟的优势。
Traditional ultrasonic echo time-delay estimation algorithm is studied in the background of Gauss Noise
while in actual working condition ultrasonic echo includes not only Gauss Noise but also impulsive noise (
α
noise with stable distribution)
which will invalidate traditional algorithms. In actual application
in order to solve the above problem
a new ultrasonic echo time-delay estimation method under mixed noise
especially the background containing
α
noises
was proposed
called time delay estimation algorithm with normalized cyclic correlation. Firstly
a brief introduction to theory of such normalized cyclic correlation algorithm was given and a theoretical derivation analysis on such algorithm was conducted.Then
combined with simulation analysis
the performance of proposed algorithm and traditional cyclic cross-correlation algorithm were compared under the same condition. At last
the estimation performance of such normalized cyclic correlation time delay estimation algorithm was analyzed under different singal-noise ratios. Contrast test indicates that when
α
approaches to 1
the cyclic cross-correlation algorithm is unable to estimate the time delay
while the normalized cyclic cross-correlation algorithm still maintains the deviation at 0.4
μ
s; and under -10dB SNR
the time delay estimated by normalized cyclic cross-correlation algorithm is also maintained within 10
μ
s. The normalized cyclic cross-correlation algorithm proposed in the article is able to make accurate estimation of time delay of ultrasonic echo under the background of mixed noise
especially the one contains
α
noise
which is an incomparable advantage that traditional algorithm is unable to counteract.
GARDNER W A, CHEN C K. Interference-tolerant time-difference-of-arrival estimation for modulated signals[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1988, 36(9):1385-1395.
KNAPP C H, CARTER G C. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1976, 24(4):320-327.
XIAOLE Y, LICHEN G. Time-delay estimation of ultrasonic echoes based on the physical model matching[C]. 2012 IEEE International Conference on Automation Science and Engineering (CASE), IEEE, 2012:469-473.
CARLSON J E, SJOBERG F. Simultaneous maximum likelihood estimation of time delay and time scaling[C].2004 Proceedings of the 6th Nordic Signal Processing Symposium, 2004 NORSIG, 2004.
HONGZHI W, PEIXIN X, AIQI B. A new adaptive time delay estimation using fourth-order cumulants based on polarity iterative[C]. 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), IEEE, 2014, 1:257-259.
WANG H, ZHAO J, QIAN L. Research of time-delay estimation based on fourth-second order normalized cumulant[C].2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), IEEE, 2010, 5:29-32.
行鸿彦, 唐娟.时延估计方法的分析[J].声学技术, 2008(1):110-114.
XING H Y, TANG J. Analysis and survey of algorithms for time-delay estimation[J].Technical Acoustics, 2008(1):110-114.(in Chinese)
赵九龙, 马瑜.三维医学图像的混合噪声去除法[J].液晶与显示, 2015, 30(2):340-346.
ZHAO J L, MA Y. Mixed noise removing method for three-dimensional medical images[J].Chinese Journal of liquid Crystals and Displays, 2015, 30(2):340-346.(in Chinese)
TSIHRINTZIS G A, NIKIAS C L.Fast estimation of the parameter of Alpha-stable impulsive interface[J].IEEE Transactions on Signal Processing, 1996, 44(6):1492-1503.
孙永梅, 邱天爽.脉冲噪声环境下的自适应时间延迟估计新方法[J].电子与信息学报, 2005(27):740-744.
SUN Y M, QIU T SH. A new method of adaptive time delay estimation in impulsive noise environments[J]. Journal of Electronics & Information Technology, 2005(27):740-744.
CHEN C K, GARDNER W A. Signal-selective time-difference of arrival estimation for passive location of man-made signal sources in highly corruptive environments. II. Algorithms and performance[J]. IEEE Transactions on Signal Processing, 1992, 40(5):1185-1197.
HAYVACI H T, SETLUR P, DEVROYE N, et al.. Maximum likelihood time delay estimation and Cramér-Rao bounds for multipath exploitation[C]. Radar Conference (RADAR), 2012 IEEE. IEEE, 2012:764-768.
LIANG M, XI H L, WAN G Z, et al.. The generalized cross-correlation method for time delay estimation of infrasound signal[C]. 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), IEEE, 2015:1320-1323.
SWAMI A, SADLER B. Parameter estimation for linear alpha-stable processes[J]. Signal Processing Letters, 1998, 5(2):48-50.
DEMIRLI R, SANIIE J. Model-based estimation of ultrasonic echoes Part I:analysis and algorithms[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48(3):787-802.
DA SILVA T P, CASTALDO F C. Ultrasonic anemometer based in cross correlation[C]. 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC). IEEE, 2015:1-5.
郭纲, 王树勋, 孙晓颖.等.超声信号的双指数模型及参数确定方法[J].电子学报, 2009, 37(7):1501-1504.
GUO G, WANG SH X, SUN X Y, et al..Ultrasonic double exponential model and its parameter determination[J].Acta Electronic Sinica, 2009, 37(7):1501-1504.
MA X Y, NIKIAS C L. Joint estimation od time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 1996, 44(11):2669-2687.
张贤达, 保铮.非平稳信号分析与处理[M].北京, 国防工业出版社, 2001.
ZHANG X D, BAO ZH. Non-stationary Signal Analysis and Processing[M]. Beijing:National Defense Industry Press, 2001.
0
浏览量
90
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构