浏览全部资源
扫码关注微信
1.东北林业大学 理学院, 黑龙江 哈尔滨 150040
2.哈尔滨工业大学 光电子技术研究所与可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150080
3.东北林业大学 机电工程学院, 黑龙江 哈尔滨 150040
田赫(1983-),男,山东莱芜人,博士,讲师,2005年、2012年于哈尔滨工业大学分别获得学士、博士学位,主要从事激光、光学传感及检测方面的研究。E-mail:tianhe@163.com E-mail:tianhe@163.com
[ "掌蕴东(1957-),男,辽宁锦州人,博士,教授,博士生导师,1982年于大连理工大学获得学士学位,1991年、1997年于哈尔滨工业大学分别获得硕士、博士学位,主要从事激光、光学滤波、非线性光学、光纤传感等方面的研究。E-mail:ydzhang@hit.edu.cn" ]
收稿日期:2016-09-13,
录用日期:2016-10-12,
纸质出版日期:2017-01-25
移动端阅览
田赫, 掌蕴东, 白岩. 单光学谐振器感应透明现象的窄带透射峰[J]. 光学精密工程, 2017,25(1):59-64.
He TIAN, Yun-dong ZHANG, Yan BAI. Transmission peak with narrow bandwidth in single optical resonator induced-transparency[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 59-64.
田赫, 掌蕴东, 白岩. 单光学谐振器感应透明现象的窄带透射峰[J]. 光学精密工程, 2017,25(1):59-64. DOI: 10.3788/OPE.20172501.0059.
He TIAN, Yun-dong ZHANG, Yan BAI. Transmission peak with narrow bandwidth in single optical resonator induced-transparency[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 59-64. DOI: 10.3788/OPE.20172501.0059.
基于光学谐振器结构的感应透明现象通常是利用双光学谐振器产生的,但由于谐振器间易失谐,因此感应透明现象难以稳定。本文研究利用单光学谐振器实现稳定的感应透明现象,并获得透过率大、带宽窄的透射峰。首先建立单光学谐振器自干涉结构,利用传输矩阵理论讨论该结构的透射谱,研究结构参数对透射谱的影响,实验上,基于理论结果选择适当的结构参数,利用单模光纤制作单光学谐振器自干涉结构,建立实验系统测量结构的透射谱,最后讨论了该结构的应用。实验结果表明:利用基于单光学谐振器感应透明现象可获得带宽很窄的透射峰,峰值透过率为0.62,透射峰带宽为0.54 MHz,透射峰带宽与波导长度乘积为6.48 MHz·m。基于单光学谐振器感应透明现象的窄带透射峰可用于窄带滤波、光学信息处理、高精度光学参量测量及检测等。
Induced-transparency based on optical resonator structure is usually generated by utilizing double optical resonators. However the induced-transparency is not stable due to the detuning between resonators. In this paper
stable induced-transparency
of which the transmission peak has high transmittance and narrow bandwidths
was achieved by using a single optical resonator. First a single optical resonator self-interference structure was established
and the transmission spectra of the structure were discussed using transfer matrix theory in order to investigate the influence of structural parameters on the transmission spectra. Based on the theoretical results
a single optical resonator self-interference structure with single-mode fiber was fabricated with appropriate structure parameters. Then the experimental system for measuring the transmission spectra of the structure was established. Finally
the applications of the structure were discussed. The experimental results show that the transmission peak with very narrow bandwidths can be obtained by using the single optical resonator induced-transparency. The peak transmittance is 0.62
the bandwidth of the transmission peak is 0.54 MHz
and the product of the transmission peak bandwidth and the length of the waveguide is 6.48 MHz·m. The transmission peak with narrow bandwidth can be applied to filters
optical information processing
high precision optical measurements and detections.
HARRIS S E, FIELD J E, KASAPI A. Dispersive properties of electromagnetically induced transparency[J]. Physical Review A, 1992, 46(1):R29-R32.
NAWEED A, FARCA G,SHOPOVA S I, et al.. Induced transparency and absorption in coupled whispering-gallery microresonators[J]. Physical Review A, 2005, 71(4):043804.
XU Q F, SANDHU S, POVINELLI M L, et al.. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency[J]. Physical Review Letters, 2006, 96(12):123901.
ZHANGL, SONG M P, WU T, et al.. Embedded ring resonators for microphotonic applications[J]. Optics Letters, 2008, 33(17):1978-1980.
ZHANG Y, DARMAWAN S, TOBING L Y M, et al.. Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer[J]. Journal of the Optical Society of America B, 2011, 28(1):28-36.
SULTANA P, TAKAMI A, MATSUMOTO T,et al.. Delayed optical images through coupled-resonator-induced transparency[J]. Optics Letters, 2010, 35(20):3414-3416.
MANCINELLIM, BETTOTTI P, FEDELI J M, et al.. Reconfigurable optical routers based on coupled resonator induced transparency resonances[J]. Optics Express, 2012, 20(21):23856-23864.
ANG T Y L, NGO N Q. Enhanced coupled-resonator-induced transparency and optical fano resonance via intracavity backscattering[J]. Journal of the Optical Society of America B, 2012, 29(5):1094-1103.
LU Y, XU L J, SHU M L, et al.. Proposal to produce coupled resonator-induced transparency and bistability using microresonator enhanced Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2008, 20(7):529-531.
MANCINELLI M, GUIDER R, BETTOTTI P,et al.. Coupled-resonator-induced-transparency concept for wavelength routing applications[J]. Optics Express, 2011, 19(13):12227-12240.
胡鹏程,时玮泽,梅健挺. 高精度铂电阻测温系统[J]. 光学精密工程,2014,22(4):988-995.
HU P CH, SHI W Z, MEI J T. High precision Pt-resistance temperature measurement system[J]. Opt. Precision Eng., 2014, 22(4):988-995. (in Chinese)
李国华,胡志云,王晟,等. 基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J]. 光学精密工程,2016,24(1):14-19.
LI G H, HU ZH Y, WANG SH, et al.. 2D scanning CARS for temperature distribution measurement[J]. Opt. Precision Eng., 2016, 24(1):14-19. (in Chinese)
崔玉国,朱耀祥,楼军强,等. 压电微夹钳钳指位移与夹持力的检测[J]. 光学精密工程,2015,23(5):1372-1379.
CUI Y G, ZHU Y X, LOU J Q,et al.. Detection of finger displacement and gripping force of piezoelectric micro-gripper[J]. Opt. Precision Eng., 2015, 23(5):1372-1379. (in Chinese)
TIAN H, ZHANG Y D, QI D W,et al.. Control of dispersion in fiber coupled resonator-induced transparency structure[J]. Chinese Physics B, 2016, 25(6):064204.
ZHANG Y D, TIAN H, ZHANG X N, et al.. Experimental evidence of enhanced rotation sensing in a slow-light structure[J]. Optics Letters, 2010, 35(5):691-693.
TIAN H, ZHANG Y D, ZHANG X N, et al.. Rotation sensing based on a side-coupled spaced sequence of resonators[J]. Optics Express, 2011, 19(10):9185-9191.
0
浏览量
632
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构