浏览全部资源
扫码关注微信
1.西北工业大学 自动化学院, 陕西 西安 710129
2.中国科学院长春光学精密机械研究所, 吉林 长春 130033
[ "张博(1981-),男,陕西西安人,博士研究生,讲师,2003年、2006年于西安科技大学分别获得学士、硕士学位,主要从事伺服运动控制方面的研究。E-mail:paul8899@126.com" ]
齐 蓉(1962-),女,陕西西安人,博士,教授,博士生导师。1990年、2005年于西北工业大学分别获得硕士、博士学位,主要从事控制系统故障诊断与容错设计,运动控制技术,智能检测技术,电力电子与电力传动,电力系统综合自动化,控制系统可靠性分析与设计,控制理论与应用。E-mail:lhqr@nwpu.edu.cn E-mail:lhqr@nwpu.edu.cn
收稿日期:2016-08-20,
录用日期:2016-9-27,
纸质出版日期:2017-01-25
移动端阅览
张博, 韩雪峰, 齐蓉, 等. 复合滑模控制在精密PMLSM激光切割运动平台的应用[J]. 光学精密工程, 2017,25(1):84-92.
Bo ZHANG, Xue-feng HAN, Rong QI, et al. Application of composite sliding mode control on motion platform of PMLSM precision laser cutting[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 84-92.
张博, 韩雪峰, 齐蓉, 等. 复合滑模控制在精密PMLSM激光切割运动平台的应用[J]. 光学精密工程, 2017,25(1):84-92. DOI: 10.3788/OPE.20172501.0084.
Bo ZHANG, Xue-feng HAN, Rong QI, et al. Application of composite sliding mode control on motion platform of PMLSM precision laser cutting[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 84-92. DOI: 10.3788/OPE.20172501.0084.
针对永磁直线同步电机激光切割运动平台的位置伺服控制低抖振、高精度、强鲁棒的要求,在传统双幂次滑模趋近律的基础上,提出一种变边界层的双幂次滑模趋近律带滑模扰动观测器的复合趋近律滑摸控制方法。变边界层方法是对控制系统的控制精度要求和降低抖振的权衡,而所提出的方法又继承了传统双幂次滑模趋近律方法的有限时间收敛特性。为了降低控制系统设计的保守性,设计了一种基于超螺旋算法的滑模扰动观测器对系统的未知扰动进行估计,并在此算法中添加一个幂指数,通过仿真实验证明了提高幂指数的数值可加快未知扰动的估计值的收敛速度。结合Lyapunov稳定性理论,证明了闭环系统的稳定性。最后,搭建了用于激光切割的永磁直线同步电机平移试验台对所提出的控制器进行测试。实验结果表明:本文所提出的控制器的位置跟踪误差不超过1
μ
m,且误差波动较小,能够满足伺服控制系统的要求。
A composite sliding mode control method
which was based on the traditional double power sliding mode reaching law method
was adopted for the requirements of low chattering
high-performance and strong robustness on the motion platform of permanent magnet linear synchronous motor precision laser cutting. A variable boundary layer of double power reaching law with sliding mode disturbance observer has been proposed in this paper. The method of variable boundary layer is a trade-off between control precision and chattering reduction
and it inherits the finite time convergence properties of the double power sliding mode reaching law. In order to reduce the conservatism of the system design
a sliding mode disturbance observer based on super-twisting algorithm was used to estimate the unknown disturbance on the system. A power exponent was added in this algorithm and the simulation experiments verified that increasing the value of the power exponent can accelerate the convergence rate of the unknown disturbance estimations. The stability of the closed-loop system was proved by the Lyapunov stability theory. Finally
a laser cutting translation test stage based on PMLSM was built. The experimental results showed that the proposed control method could satisfy the requirements of the system.
张刚,刘品宽,张波,等. 直线电机精密运动平台轨迹跟踪控制器设计[J]. 光学精密工程,2013,21(2):371-379.
ZHANG G,LIU P K,ZHANG B, et al. Design of trajectory tracking controller for precision positioning table driven by linear motor[J]. Opt. Precision Eng., 2013,21(2):371-379. (in Chinese)
王雷, 王龙, 唐学军,等. 数字驱动系统死区效应的双刷新补偿[J]. 光学精密工程,2012,20(12):2712-2719.
WANG L, WANG L, TANG X J, et al. Double updating dead-time compensation for digital drive system[J].Opt. Precision Eng., 2012,20(12):2712-2719. (in Chinese)
TOUNZI A, HENNERON T, MENACH Y L, et al. 3-D approaches to determine the end winding inductances of a permanent-magnet linear synchronous motor[J]. IEEE Transactions on Magnetics. 2004,40(2):758-761.
CHEN S L, TAN K K, HUANG S, et al. Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay[J]. IEEE/ASME Transactions on Mechatronics, 2010,15(4):586-594.
ZHANG M, YIN W. Research on iterative learning control of PMLSM[C]. MACE, 2010:5613-5616.
WANG J, LI D. Application of fuzzy PID control in PMLSM servo drive system[C]. ICMA, 2015:6-10.
EL-SOUSY F F M. Intelligent mixed H 2 /H ∞ adaptive tracking control system design using self-organizing recurrent fuzzy-wavelet-neural-network for uncertain two-axis motion control system[J].Applied Soft Computer, 2016,41:22-50.
高为炳. 变结构控制的理论及设计方法[M]. 北京:科学出版社, 1996.
GAO W B. Variable Structure Control Theory And Design Method[M]. Beijing:Science Press,1996. (in Chinese)
梅红,王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制,2009, 38(5):552-557.
MEI H, WANG Y. Fast convergent sliding mode variable structure control of robot[J]. Information & Control,2009,38(5):552-557. (in Chinese)
张合新, 范金锁. 一种新型滑模控制双幂次趋近律[J]. 控制与决策, 2013, 28(2):289-293.
ZHANG H X,FAN J S. A new double power reaching law for sliding mode control[J].Control & Decision,2013, 28(2):289-293. (in Chinese)
李慧洁,蔡远利. 基于双幂次趋近律的滑模控制方法[J]. 控制与决策,2016,31(3):498-502.
LI H J, CAI Y L. Sliding mode control with double power reaching law[J].Control and Decision, 2016,31(3):498-502.(in Chinese)
PANAH P G, ATAEI M, MIRZAEIAN B, et al. A robust adaptive sliding mode control for PMLSM with variable velocity profile over wide range[J].Research Journal of Applied Sciences Engineering & Technology, 2015,10(9):997-1006.
WEI L S, CHEN Q G, LU H C, et al. Sliding mode control of PMLSM for high speeding gringding machine[J]. Advanced Materials Research, 2012, 462:701-706.
郭亚军. 自适应反演滑模控制在火箭炮交流伺服系统中的应用[J]. 兵工学报, 2011, 32(4):493-497.
GUO Y J. Application of adaptive backstepping sliding mode control in alternative current servo system of rocket gun[J].Acta Armamentarii, 2011, 32(4):493-497. (in Chinese)
李鹏, 马建军,郑志强. 采用幂次趋近律的滑模控制稳态误差界[J]. 控制理论与应用, 2011, 28(5):619-624.
LI P, MA J J, ZHENG ZH Q. Sliding mode control approach based on nonlinear integrator[J].Control Theory & Applications, 2011, 28(5):619-624.(in Chinese)
常雪剑,刘凌,崔荣鑫. 永磁同步电机非奇异快速终端可变边界层滑模控制[J]. 西安交通大学学报,2015,49(6):53-59.
CHANG X J, LIU L, CUI R X. A nonsigular fast terminal sliding mode controller with varying boundary layer for PMSM[J].Journal of Xi'an Jiaotong University, 2015,41(6):54-59. (in Chinese)
CHEN H M, RENN J C, SU J P. Sliding mode control with varying boundary layers for an electro-hydraulic position servo system[J]. The International Journal of Advanced Manufacturing Technology, 2005,26(1-2):117-123.
常雪剑,彭博,刘凌,等. 新型非奇异终端滑模观测器的永磁同步电机无传感器控制[J]. 西安交通大学学报,2016,50(1):85-91.
CHANG X J, PENG B, LIU L, et al. A novel nonsingular terminal sliding mode observer for sensorless control of permanent magnet synchronous motor[J].Journal of Xi'An Jiaotong University, 2016,50(1):85-91.(in Chinese)
H R, JIANG Z B, KANG N. Sliding mode disturbance observer-based fractional second-order nonsingular terminal sliding mode control for pmsm position regulation system[J]. Mathematical Problems in Engineering, 2015, 2015:1-14.
POLYAKOV A, FRIDMAN L. Stability notions and Lyapunov functions for sliding mode control systems[J]. Journal of the Franklin Institute, 2014, 351(4):1831-1865.
KABZIŃSKI J. Adaptive servo control with polynomial approximation of stribeck curve[J]. Przeglad Elektrotechniczny, 2014.
韩邦成, 马纪军,李海涛. 谐波减速器的非线性摩擦建模及补偿[J]. 光学精密工程,2011, 19(5):1095-1103.
HAN B CH, MA J J, LI H T. Modeling and compensation of nonlinear friction in harmonic driver[J].Opt. Precision Eng., 2011, 19(5):1095-1103.(in Chinese)
0
浏览量
366
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构