浏览全部资源
扫码关注微信
1.重庆理工大学 机械工程学院, 重庆 400054
2.时栅传感及先进检测技术重庆市重点实验室, 重庆 400054
鲁进(1980-),女,重庆人,硕士,副教授,2003年、2006年于重庆大学分别获得学士、硕士学位,现为重庆理工大学机械工程学院副教授,主要从事精密测量与智能传感器方面的研究。E-mail:jinlu@cqut.edu.cn E-mail:jinlu@cqut.edu.cn
[ "陈锡侯(1976-),男,福建漳州人,教授,硕士生导师,1999年、2004年、2007年于重庆大学分别获得学士、硕士、博士学位,现为重庆理工大学教授,主要从事精密测量与智能传感器方面的研究。E-mail:cxh0458@cqut.edu.cn" ]
收稿日期:2016-06-24,
录用日期:2016-8-20,
纸质出版日期:2017-01-25
移动端阅览
鲁进, 陈锡侯, 武亮, 等. 基于平面线圈的高分辨力时栅角位移传感器[J]. 光学精密工程, 2017,25(1):172-181.
Jin LU, Xi-hou CHEN, Liang WU, et al. High resolution time grating angular displacement sensor based on planar coils[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 172-181.
鲁进, 陈锡侯, 武亮, 等. 基于平面线圈的高分辨力时栅角位移传感器[J]. 光学精密工程, 2017,25(1):172-181. DOI: 10.3788/OPE.20172501.0172.
Jin LU, Xi-hou CHEN, Liang WU, et al. High resolution time grating angular displacement sensor based on planar coils[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 172-181. DOI: 10.3788/OPE.20172501.0172.
针对现有时栅角位移传感器采用漆包线绕制工艺加工线圈,导致线圈布线不均且容易随时间发生变化进而影响测量精度的问题,提出一种基于PCB技术的新型时栅角位移传感器。该传感器通过在PCB基板的不同层上布置特定形状的激励线圈和感应线圈,形成两个完全相同并沿圆周空间正交的传感单元;当在两传感单元的激励线圈中分别通入时间正交的两相激励电流后,通过导磁定子基体和具有特定齿、槽结构的导磁转子对传感单元内的磁场实施精确约束,使两传感单元的感应线圈串联输出初相角随转子转角变化的正弦感应信号;最后通过高频时钟脉冲插补初相角实现精密角位移测量。利用有限元分析软件对传感器进行了建模和仿真。根据仿真模型制作了传感器实物,开展了验证实验,并对实验中角位移测量误差的频次和来源进行了详细分析。经过标定和补偿,最终获得了整周范围内误差在-2.82"~2.02"的时栅角位移传感器。理论推导、仿真分析和实验验证均表明,该传感器不仅能实现精密角位移测量,还能在激励线圈和感应线圈空间极距和信号质量不变的情况下,将位移测量的分辨力从信号源头提高1倍,且结构简单稳定、极易实现,特别适用于环境恶劣的工业现场。
The measurement accuracy is easily influenced by non-uniformity of coil wiring and variation with time
which is originally because of the use of enameled coils in traditional time grating angular displacement sensor. For this
a new time grating angular displacement sensor based on PCB(Printed Circuit Board) technology was proposed. By arranging particular shapes of excitation and induction coils in different layers of PCB baseboard
the sensor formed two identical sensor units and they were of quadrature positions in the circle; when excitation coils of two sensor units were switched on two-phase time-quadrature AC respectively
magnetic field was precisely restrained by magnetic stator base and magnetic rotor with specific teeth and slots to make induction coils of both sensor units in series output sine sense signal with primary phase varying with rotor's rotation; finally
precise angular displacement measurement was achieved by interpolating high-frequency clock pulse into primary phase. The sensor was modeled and simulated by using FEA(Finite Element Analysis) software. According to simulation models
the sensor object was made and confirmatory experiment was carried out. Frequency and source of angular displacement measuring error were analyzed in detail. Ultimately
the measurement error of the new time-grating angular displacement sensor is within -2.82"~2.02" in the whole scale after calibration and compensation. Theoretical derivation
simulation analysis and experiment verification all indicate that the sensor can not only achieve precise angular displacement measurement
but also it can double the resolving ability of displacement measurement from the signal source when the space pole distance and signal quality of excitation and induction coils are unchanging. The stable structure is easy to be achieved and especially applied to industrial sites in poor environment.
DZIWINSKI T. A novel approach of an absolute encoder coding pattern[J]. IEEE Sensors Journal, 2015, 15(1):397-401.
NAQUI J, MARTÍN F. Angular displacement and velocity sensors based on electric-LC(ELC) Loaded microstrip lines[J]. IEEE Sensors Journal, 2014, 14(4):939-940.
NAQUI J, MARTÍN F. Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12):4700-4713.
HORESTANI A K, ABBOTT D, FUMEAUX C. Rotation sensor based on horn-shaped split ring resonator[J]. IEEE Sensors Journal, 2013, 13(8):3014-3015.
BARTSCH H, GEILING T, MVLLER J. A LTCC low-loss inductive proximity sensor for harsh environments[J]. Sensors and Actuators A:Physical, 2012(175):28-34.
ASCHENBRENNER B, ZAGAR B G. Analysis and validation of a planar high-frequency contactless absolute inductive position sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2015(3):768-775.
FIGUEIREDO J. Resolver models for manufacturing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8):3693-3700.
HWANG S H, KIM H J, KIM J M, et al. Compensation of amplitude imbalance and imperfect quadrature in resolver signals for PMSM drives[J]. IEEE Transactions on Industry Applications, 2011, 47(1):134-143.
HOSEINNEZHAD R, BAB-HADIASHAR A, HARDING P. Calibration of resolver sensors in electromechanical braking systems:A modified recursive weighted least-squares approach[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2):1052-1060.
SARMA S, VENKATESWARALU A. Systematic error cancellations and fault detection of resolver angular sensor using a DSP based system[J]. Mechatronics, 2009, 19(8):1303-1312.
ASCHENBRENNER B, ZAGAR B G, MEMBER S. Analysis and validation of a planar high-frequency contactless absolute inductive position sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(3):768-775.
ZHANG Z, NI F, DONG Y, et al. A novel absolute angular position sensor based on electromagnetism[J]. Sensors and Actuators A:Physical, 2013(194):196-203.
YE L, YANG M, XU L, et al. Optimization of inductive angle sensor using response surface methodology and finite element method[J]. Measruement, 2014(48):252-262.
TANG Q F, PENG D L, WU L, et al. An inductive angular displacement sensor based on planar coil and contrate rotor[J]. IEEE Sensors Journal, 2015, 15(7):3947-3954.
彭东林, 刘小康, 张兴红. 高精度时栅位移传感器研究[J]. 机械工程学报, 2005, 41(12):126-129.
PENG D L, LIU X K, ZHANG X H, et al. Research on high-precision time-grating displacement sensor[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12):126-129.(in Chinese)
刘小康, 彭凯, 王先全, 等. 纳米时栅位移传感器的理论模型与误差分析[J]. 仪器仪表学报, 2014, 35(5):1136-1142.
LIU X K, PENG K, WANG X Q, et al. Theoretical model and error analysis of nanometer time grating displacement sensor[J]. Chinese Journal of Scientific Instrument, 2014, 35(5):1136-1142.(in Chinese)
鲁进, 陈锡侯, 武亮, 等. 变耦型时栅位移传感器理论模型与误差研究[J]. 仪器仪表学报, 2016, 37(3):561-569.
LU J, CHEN X H, WU L, et al. Study on the theoretical model and error characteristics of variable coupling time grating displacement sensor[J]. Chinese Journal of Scientific Instrument, 2016, 37(3):561-569.(in Chinese)
彭东林, 李彦, 付敏, 等. 用于极端和特殊条件下机械传动误差检测的寄生式时栅研究[J]. 仪器仪表学报, 2013, 34(2):359-365.
PENG D L, LI Y, FU M, et al. Study on parasitic time grating sensors used for mechanical transmission error measurement under harsh and special environment[J]. Chinese Journal of Scientific Instrument, 2013, 34(2):359-365.(in Chinese)
0
浏览量
761
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构