浏览全部资源
扫码关注微信
上海交通大学 电子信息与电气工程学院, 上海 200240
裴利然(1989-)女, 河南濮阳人, 博士研究生, 2014年于吉林大学获得硕士学位, 主要从事精密医疗仪器, 智能检测系统的研究。E-mail:woaiwojiaPLR@sjtu.edu.cn E-mail:woaiwojiaPLR@sjtu.edu.cn
[ "姜萍萍(1975-)女,安徽安庆人,工学博士,2005年于上海交通大学获得博士学位,主要从事精密医疗仪器,智能检测系统等方面的研究。Email:jpp99@sjtu.edu.cn" ]
收稿日期:2016-08-24,
录用日期:2016-10-20,
纸质出版日期:2017-01-25
移动端阅览
裴利然, 姜萍萍, 颜国正. 基于支持向量机的跌倒检测算法研究[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):182-187.
Li-ran PEI, Ping-ping JIANG, Guo-zheng YAN. Research on fall detection system based on support vector machine[J]. Optics and precision engineering, 2017, 25(1): 182-187.
裴利然, 姜萍萍, 颜国正. 基于支持向量机的跌倒检测算法研究[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):182-187. DOI: 10.3788/OPE.20172501.0182.
Li-ran PEI, Ping-ping JIANG, Guo-zheng YAN. Research on fall detection system based on support vector machine[J]. Optics and precision engineering, 2017, 25(1): 182-187. DOI: 10.3788/OPE.20172501.0182.
实时跌倒检测能有效降低老人因跌倒导致的身心伤害,提高老人的独居能力和健康水平。为提高基于惯性传感器的跌倒检测系统的准确率,降低系统误报率和漏报率,提出了应用基于径向基函数的支持向量机算法实现跌倒判定。首先,应用佩戴在人体腰间的便携式跌倒检测系统完成数据的采集;然后,利用基于径向基函数(RBF)的SVM分类器标记疑似跌倒行为,并利用粒子群算法完成分类算法中惩罚因子
C
和RBF参数
g
的优化。结果表明,在区分跌倒与类似跌倒的日常活动时,基于SVM算法的跌倒检测系统准确率、误报率和漏报率分别为97.67%,4.0%和0.67%。与传统的阈值方法相比,跌倒检测性能有很大提高,从而加强了该系统在老人跌倒检测中的应用。
Real-time fall detection has great advantages of reducing physical and psychological damage in senior citizens group after falls and improving solitude ability and health level of senior citizens. A support vector machine (SVM) algorithm
which is based on RBF (Radial Basis Function) and applied to achieve fall detection
has been proposed in order to improve accuracy rate and lower false positive and false negative rate of fall detection system on the basis of inertial sensor. First
the system completes data collection by portable inertial sensing system at waist; then
it utilizes RBF-based SVM classifier to identify suspected fall behaviors and Particle Swarm Optimization to complete optimization of penalty factor 'C' and RBF argument 'g' in sorting algorithm. The falls and similar falls daily activities distinguishing experimetal results indicate that accuracy rate
false positive and false negative rate based on SVM algorithm are 97.67%
4.0% and 0.67% respectively. Compared with traditional threshold methods
the performance of proposed method on fall detection is promoted remarkably
so it can conclude that the appliance of the system in senior citizens' fall detection is enhanced as well.
LIN S I, CHANG K CH, LEE H C, et al.. Problems and fall risk determinants of quality of life in older adults with increased risk of falling[J]. Geriatrics & Gerontology International, 2015, 15(5):579-587.
SCHWICKERT L, BECKER C, LINDEMANN C,et al..Fall detection with body-worn sensors a systematic review[J]. Zeitschrift für Gerontologie und Geriatrie, 2013,46(8):706-719.
ISABEL N F, CARLOS L, LUIS P,et al.. Exploring smartphone sensors for fall detection[J].Mobile User Experience, 2016, 5(1):1-17.
KANGAS M, KONTTILA A, LINDGREN P, et al. Comparison of low-complexity fall detection algorithms for body attached accelerometers[J]. Gait & Posture, 2008,285-291.
LAI CH F, CHAGN S Y, CHAO H CH, et al.. Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling[J].IEEE Sensor Joutnal,2011, 11(3):763-770.
于海,梁立辉,王树洁,等. 基于径向基函数神经网络的高精度基准编码器误差补偿[J]. 红外与激光工程,2014,43(12):4123-4127.
YU H,LIANG L H,WANG S J, et al.. Error compensation for high precision reference encoder based on RBF neural networks[J].Infrared and Laser Engineering,2014,43(12):4123-4127.(in Chinese)
黄璇,郭立红,李姜,等. 磷虾群算法优化支持向量机的威胁估计[J]. 光学精密工程,2016,24(6):1448-1454.
HUANG X, GUO L H, LI J, et al..Threat assessment of SVM optimized by Krill Herd algorithm[J].Opt. Precision Eng.,2016, 24(6):1448-1454.(in Chinese)
宋悦,林志贤,姚剑敏,等. 基于ε支持向量回归机的背光源亮度均匀性评价方法[J]. 液晶与显示.2015,30(5):857-863.
SONG Y,LIN ZH X,YAO J M,et al.. Luminance uniformity evaluation for backlight based on ε-SVR[J].Chinese Journal of Liquid Crystals and Displays,2015,30(5):857-863.(in Chinese)
李姜,郭立红. 基于改进支持向量机的目标威胁估计[J]. 光学精密工程,2014,22(5):1354-1362.
LI J, GUO L H. Target threat assessment using improved SVM[J].Opt. Precision Eng.,2014,22(5):1354-1362.(in Chinese)
刘富,刘惠影,高雷,等. 基于手指融合特征和粒子群优化的手形识别[J]. 光学精密工程,2015,23(6):1774-1781.
LIU F, LIU H Y, GAO L, et al. Hand shape recognition based on fusion features of finger and particle swarm optimization[J].Opt. Precision Eng.,2015,23(6):1774-1781.(in Chinese)
王洪涛,李丹. 基于改进粒子群算法的图像边缘检测研究[J]. 液晶与显示,2014,29(5):800-804.
WANG H T,LI D. Image edge detection based improved PSO algorithm[J].Chinese Journal of Liquid Crystals and Displays,2014,29(5):800-804.(in Chinese)
范新明,曹剑中,杨洪涛,等. 改进粒子群优化在稳定平台多空间分析模型的应用[J]. 红外与激光工程,2015,44(8):2395-2400.
FAN X M, CAO J ZH, YANG H T, et al..Application of improved PSO in stabilized platform based on multiple reference frame model[J].Infrared and Laser Engineering,2015,44(8):2395-2400.(in Chinese)
BOURKE A K, VAN de VEN, GAMBLE M, et al.. Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities[J]. Journal of Biomechanics, 2010, 43(15):3051-3057.
0
浏览量
557
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构