浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
霍丽君(1989-), 女, 山西左权人, 博士研究生, 2008年于吉林大学获得学士学位, 主要从事非均匀性校正、遥感图像处理等方面的研究。E-mail:huolj2014@163.comE-mail:huolj2014@163.com
[ "何斌(1961-),男,吉林长春人,研究员,1983年于南京理工大学获得学士学位,1990年于北京理工大学获得硕士学位,2001年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间遥感图像处理技术方面的研究。E-mail:hbemail@163.com" ]
收稿日期:2016-06-15,
录用日期:2016-8-24,
纸质出版日期:2017-01-25
移动端阅览
霍丽君, 何斌, 周达标. 遥感图像条带噪声的多尺度变分模型去除[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):198-207.
Li-jun HUO, Bin HE, Da-biao ZHOU. A destriping method with multi-scale variational model for remote sensing images[J]. Optics and precision engineering, 2017, 25(1): 198-207.
霍丽君, 何斌, 周达标. 遥感图像条带噪声的多尺度变分模型去除[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):198-207. DOI: 10.3788/OPE.20172501.0198.
Li-jun HUO, Bin HE, Da-biao ZHOU. A destriping method with multi-scale variational model for remote sensing images[J]. Optics and precision engineering, 2017, 25(1): 198-207. DOI: 10.3788/OPE.20172501.0198.
多片CCD拼接遥感成像系统由于存在非均匀性问题,导致遥感图像中常存在条带噪声,本文在分析条带噪声的主要来源和模型的基础上,提出了多尺度变分模型的条带噪声去除方法。首先,分析了条带噪声的特点并建立了图像退化模型。其次,结合条带噪声的单向性特点与多尺度分层分解方法构造能量泛函。然后,利用不动点Gauss-Seidel迭代法多尺度分级极小化能量泛函,将条带噪声和图像有用信息分离。最后,对各尺度结构分量和细节分量进行累加,得到去噪图像。实验结果表明:对于周期条带噪声,图像畸变量为2‰,图像辐射质量提升到11.715 dB;对于随机条带噪声,图像畸变量为3.3‰,图像辐射质量提升到11.092 5 dB。与典型条带噪声去除方法相比,不管是周期条带噪声还是随机条带噪声,本文方法均能够在保证畸变量很小的情况下,将其完全去除,满足遥感图像低畸变量的预处理要求。
Non-uniformity often occurs in multi-detectors remote-sensing imaging system
resulting in the existence of strip noise in remote sensing images. A destriping method with multi-scale variational model has been proposed on the basis of the analysis on the main sources and model of stripe noise. First
the characteristics of strip noise have been analyzed and the degradation model of the image has been formulated. Secondly
the unidirectional characteristic of strip noise and multi-scale hierarchical image decomposition have been combined to structure
J
-functional. Then
the method uses fixed point Gauss-Seidel iterative method to minimize multi-scale
J
-functional and separate stripe noise and useful information. Last
structural and details component under different scales will be accumulated to obtain the destriped images. The experiment result on real remote sensing images indicates that the image distortion is 2‰ and IF increases to 11.715 0 dB for regular stripe noise; the image distortion is 3.3‰ and the IF increases to 11.092 5 dB for random stripe noise. Compared with typical destriping methods
the method in this paper can ensure that stripe noise will be removed completely and pre-processing requirements of small distortion for remote sensing images will be met
for both regular stripe noise and random stripe noise.
孙斌, 李景林, 张星祥, 等. 600 mm长焦平面时间延迟积分CCD的交错拼接[J]. 光学精密工程,2014,22(11):2908-2913.
SUN B, LI J L, ZHANG X X,et al.. Interleaving assembly of TDICCDs on 600 mm focal plane[J].Opt. Precision Eng., 2014,22(11):2908-2913.(in Chinese)
李晓杰, 任建伟, 李宪圣, 等. 反射式拼接CCD相机非均匀性定标与校正[J]. 液晶与显示,2014,29(6):1057-1064.
LI X J, REN J W, LI X SH,et al.. Non-uniformity calibration and correction of reflector-based mosaic CCD camera[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(6):1057-1064.(in Chinese)
刘则洵, 全先荣, 任建伟, 等. CCD相机输出非均匀性线性校正系数的定标[J]. 红外与激光工程,2012,41(8):2211-2215.
LIU ZE X,QUAN X R,REN J W,et al.. Calibration of CCD camera's output non-uniformity linear corrected coefficient[J].Infrared and Laser Engineering, 2012,41(8):2211-2215.(in Chinese)
曹扬, 金伟其, 刘崇亮, 等. 红外焦平面阵列的自适应非均匀性校正及硬件实现[J]. 光学精密工程,2011,19(12):2985-2991.
CAO Y, JIN W Q, LIU CH L,et al.. Adaptive nonuniformity correction and hardware implementation of IRFPA[J]. Opt. Precision Eng., 2011,19(12):2985-2991.(in Chinese)
王文华, 何斌, 韩双丽, 等. 星上CCD成像非均匀性的实时校正[J]. 光学精密工程,2010,18(6):1420-1428.
WANG W H, HE B, HAN SH L,et al.. Real-time correction of nonuniformity in CCD imaging for remote sensing[J]. Opt. Precision Eng., 2010,18(6):1420-1428.(in Chinese)
宁永慧, 郭永飞, 曲利新, 等. 多通道时间延迟积分CCD辐射标定和像元实时处理[J]. 光学精密工程,2015,23(10):2952-2961.
NING Y H, GUO Y F, QU L X,et al..Radiometric calibration and pixel data real-time processing of multi-tip TDICCD[J]. Opt. Precision Eng., 2015,23(10):2952-2961.(in Chinese)
JINSONG C, YUN S, GUO H,et al.. Destriping CMODIS data by power filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(9):2119-2124.
TORRES J, INFANTE SO. Wavelet analysis for the elimination of striping noise in satellite images[J]. Society of Photo-Optical Instrumentation Engineers, 2001,40(7):1309-1314.
RAKWATIN P, TAKEUCHI W, YASUOKA Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter[J].IEEE Transactions on Geoscience and Remote Sensing, 2007,45(6):1844-1856.
GADALLAH F, CSILLAG F, SMITH E. Destriping multisensor imagery with moment matching[J]. International Journal of Remote Sensing,2000,21(12):2505-2511.
韩玲, 董连凤, 张敏, 等. 基于改进的矩匹配方法高光谱影像条带噪声滤波技术[J]. 光学学报,2009,29(12):3333-3338.
HAN L, DONG L F, ZHANG M,et al.. Destriping hyperspectral image based on an improved moment matching method[J]. Acta Optica Sinica,2009,29(12):3333-3338.(in Chinese)
BOUALI M, LADJAL S. Toward optimal destriping of MODIS data using a unidirectional variational model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(8):2924-2935.
TADMOR E, NEZZAR S, VESE L. A multiscale image representation using hierarchical(BV, L 2 ) decompositions[J]. Multiscale Modeling & Simulation, 2004,2(4):554-579.
王超. 基于变分问题和偏微分方程的图像处理技术研究[D]. 合肥:中国科学技术大学, 2007:13-22.
WANG CH. Image processing based on variational problems and partial differential equations[D]. Hefei:University of Science and Technology of China,2007:13-22.(in Chinese)
赵文达, 赵建, 韩希珍, 等. 基于变分偏微分方程的红外图像增强算法研究[J]. 液晶与显示,2014,29(2):281-285.
ZHAO W D, ZHAO J, HAN X ZH, et al.. Infrared image enhancement based on variational partial differential equations[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(2):281-285.(in Chinese)
ZHOU G, FANG H, YAN L, et al.. Removal of stripe noise with spatially adaptive unidirectional total variation[J]. Optik, 2014,125(12):2756-2762.
0
浏览量
668
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构