浏览全部资源
扫码关注微信
河北工业大学 机械工程学院, 天津 300130
[ "刘迎(1990-),女,河北石家庄人,硕士,2013年、2016年于河北工业大学分别获得学士、硕士学位,主要从事三维形貌测量与点云数据处理方面的研究。E-mail:2798710661@qq.com " ]
张宗华(1974-),男,江苏徐州人,教授,1996年、1998年、2001年于天津大学分别获得学士、硕士和博士学位,主要从事光学检测、三维数字成像和造型、条纹自动分析和三维生物测定等方面的研究。E-mail:zhzhangtju@hotmail.com,zhzhang@hebut.edu.cn E-mail:zhzhangtju@hotmail.com,zhzhang@hebut.edu.cn
收稿日期:2016-06-12,
录用日期:2016-08-02,
纸质出版日期:2017-01-25
移动端阅览
刘迎, 王朝阳, 高楠, 等. 特征提取的点云自适应精简[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):245-254.
Ying LIU, Chao-yang WANG, Nan GAO, et al. Point cloud adaptive simplification of feature extraction[J]. Optics and precision engineering, 2017, 25(1): 245-254.
刘迎, 王朝阳, 高楠, 等. 特征提取的点云自适应精简[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):245-254. DOI: 10.3788/OPE.20172501.0245.
Ying LIU, Chao-yang WANG, Nan GAO, et al. Point cloud adaptive simplification of feature extraction[J]. Optics and precision engineering, 2017, 25(1): 245-254. DOI: 10.3788/OPE.20172501.0245.
作为一种反映物体形貌的三维信息,点云数据的原始数据量十分庞大,直接对过多的数据进行操作会影响后续重建等工作。本文提出了一种新的点云特征提取自适应精简算法。首先对原始点云进行空间划分,构建点的
k
邻域,设置特征参数,进行特征分析,识别不同区域的信息和数据。然后针对平面数据预先进行边界的检测和提取,对剩余部分进行精简。最后,针对非平面区域,先提取特征,再根据曲率的不同进行不同程度的精简。办公室数据扫描实验结果表明,处理大小为百万以内点的点云模型可以在几秒之内完成,精简比能够达到90%以上,与原始数据间的误差较小:平面部分在精简前后平均偏差均在0.02 mm以内,波动很小,为0.005 7 mm;非平面区域精简前后的平均偏差均在0.08 mm左右,差值仅为0.000 3 mm,精简精度得以保证。因此,利用提出的算法处理后的数据能更好地展示物体的形貌。
Point cloud data
as a kind of three-dimensional information reflecting the object shape
have quite a large amount of original data
so if directly operating on excessive data
it will affect subsequent work such as point clouds reconstruction
etc. This paper proposes a novel adaptive simplification algorithm for point cloud feature extraction. First
space should be divided with respect to the original point cloud
and then k neighborhood of the point should be built
and feature parameters should be set up
and then feature analysis should be conducted
and finally information and data of different parts should be identified. Then
for the planar data
the boundary is detected and extracted and the remaining parts are simplified. Finally
for the nonplanar data
the feature is extracted and then simplifications are implemented in varying degrees according to different curvatures. Experiments show that it takes no more than several seconds to process a point cloud model with almost a million points. Simplification proportion can reach above 90%
and the error corresponding to original data is smaller: the average deviation of the planar data is less than 0.02 mm before and after simplification
with a small fluctuation at 0.005 7 mm; the average deviation of the nonplanar data is likely to fluctuate around 0.08 mm and the difference is only 0.000 3 mm before and after simplification
guaranteeing the simplification accuracy. Therefore
the data processed by proposed algorithm can display the object shape better.
田庆国, 葛宝臻, 杜朴,等. 基于激光三维扫描的人体特征尺寸测量[J]. 光学精密工程, 2007, 15(1):84-88.
TIAN Q G, GE B ZH, DU P, et al.. Measurement of human figure size based on laser 3D scanning[J].Opt. Precision Eng., 2007, 15(1):84-88.(in Chinese)
袁小翠, 吴禄慎, 陈华伟. 特征保持点云数据精简[J]. 光学精密工程, 2015, 23(9):2666-2676.
YUAN X C, WU L SH, CHEN H W.Feature preserving point cloud simplification[J].Opt. Precision Eng., 2015, 23(9):2666-2676.(in Chinese)
WEIR D J,MILROY M J,BRADIEY C,et al.. Reverse engineering physical models employing wrap-around B-spline surfaces and quadrics[J]. Proceedings of the Institution of Mechanical Engineering,1996,210(22):147-157.
SUN W, BRADLEY C, ZHANG Y F, et al.. Cloud data modelling employing a unified, non-redundant triangular mesh[J]. Computer-Aided Design, 2001, 33(2):183-193.
王欣, 张明明, 于晓,等. 应用改进迭代最近点方法的点云数据配准[J]. 光学精密工程, 2012, 20(9):2068-2077.
WANG X, ZHANG M M, YU X,et al.. Point cloud registration based on improved iterative closest point method[J].Opt. Precision Eng.,2012, 20(9):2068-2077.(in Chinese)
喜文飞,方源敏,李帅,等. 一种新的激光点云数据精简方法[J]. 测绘工程,2012,21(4):38-40.
XI W F, FANG Y M,LI SH, et al..A new research on data compression and simplify technology based on laser scanning point cloud[J].Engineering of Surveying and Mapping,2012,21(4):38-40.(in Chinese)
万军,鞠鲁粤. 逆向工程中数据点云精简方法研究[J]. 上海大学学报:自然科学版, 2004,10(1):26-29.
WAN J, JU L Y. Data reduction for reverse engineering[J].Journal of Shanghai University(Natural Science),2004,10(1):26-29.(in Chinese)
黄承亮,吴侃,向娟. 三维激光扫描点云数据压缩方法[J]. 测绘科学, 2009, 34(2):142-144.
HUANG CH L, WU K, XIANG J.3D laser scanning point cloud data compression method[J]. Science of Surveying and Mapping, 2009, 34(2):142-144.(in Chinese)
徐广州, 阮萍. 光机集成仿真前处理中点云边界检测技术[J]. 红外与激光工程, 2016, 45(4):252-257.
XU G ZH, RUAN P. Point cloud boundary detection in preprocessor of optical-mechanical integrated simulation[J]. Infrared & Laser Engineering, 2016, 45(4):252-257.(in Chinese)
葛源坤,黎荣,李海伦. 空间分割与曲率相融合的点云精简算法研究[J]. 计算机应用研究, 2012, 29(5):1997-2000.
GE Y K, LI R, LI H L. Study of point cloud data reduction algorithm integrating space partition and curvature[J]. Application Research of Computers, 2012, 29(5):1997-2000.(in Chinese)
周煜,张万兵,杜发荣,等. 散乱点云数据的曲率精简算法[J]. 北京理工大学学报, 2010, 30(7):785-789.
ZHOU Y, ZHANG W B, DU F R, et al.. Algorithm for reduction of scattered point cloud data based on curvature[J]. Transaction of Beijing Institute of Technology, 2010, 30(7):785-789.(in Chinese)
张雨禾, 耿国华, 魏潇然. 散乱点云谷脊特征提取[J]. 光学精密工程, 2015, 23(1):310-318.
ZHANG Y H, GENG G H, WEI X R. Valley-ridge feature extraction from point clouds[J]. Opt. Precision Eng., 2015, 23(1):310-318.(in Chinese)
AMENTA N, BERN M, KAMVYSSELIS M. A new voronoi-based surface reconstruction algorithm[C]. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, 1998:415-421.
ANDERSSON M,GIESEN J, PAULY M, et al.. Bounds on the k-neighborhood for locally uniformly sampled surfaces[C]. Proc. of Symp on Point-Based Graphics, 2004:167-171.
王兆丰, 闫镔, 童莉,等. 自适应邻域尺寸选择的点云法向量估计算法[J]. 红外与激光工程, 2014, 43(4):1322-1326.
WANG ZH F, YAN B, TONG L, et al.. Normal estimate method of point clouds based on adaptive neighbor size[J].Infrared & Laser Engineering, 2014,43(4):1322-1326.(in Chinese)
李宝,程志全,党岗,等. 三维点云法向量估计综述[J]. 计算机工程与应用,2010, 46(23):1-7.
LI B, CHENG ZH Q, DANG G, et al.. Survey on normal estimation for 3D point clouds[J]. Computer Engineering & Applications, 2010,46(23):1-7.(in Chinese)
HOPPE H. Surface reconstruction from unorganized points[J]. Acm Siggraph Computer Graphics, 1992,26(2):71-78.
刘志强, 尹建芹, 张玲,等. 基于Kinect数据主成分分析的人体动作识别[J]. 光学精密工程, 2015, 23(10S):702-711.
LIU ZH Q, YIN J Q, ZHANG L, et al..Human action recognition based on Kinect data principal component analysis[J].Opt. Precision Eng.,2015, 23(10S):702-711.(in Chinese)
解则晓,徐尚. 三维点云数据拼接中ICP及其改进算法综述[J]. 中国海洋大学学报, 2010,40(1):99-103.
XIE Z X, XU SH. A survey on the ICP algorithm and its variants in registration of 3D point clouds[J]. Periodical of Ocean University of China, 2010, 40(1):99-103.(in Chinese)
0
浏览量
246
下载量
19
CSCD
关联资源
相关文章
相关作者
相关机构