浏览全部资源
扫码关注微信
火箭军工程大学 信息与通信工程系, 陕西 西安 710025
[ "何芳(1991-), 女, 湖北武汉人, 博士研究生, 2014年于第二炮兵工程大学获得学士学位, 主要从事信号与信息处理, 机器学习方面的研究。E-mail:hefangsi@163.com " ]
王榕(1983-), 男, 山西长治人, 讲师, 硕士生导师, 2013年于第二炮兵工程大学获得博士学位, 主要从事信号与信息处理、机器学习方面的研究。E-mail:wangrong07@tsinghua.org.cn E-mail:wangrong07@tsinghua.org.cn
[ "贾维敏(1971-),女,河北保定人,教授,博士生导师,2007年于第二炮兵工程大学获得博士学位,主要从事信号与信息处理,阵列天线信号处理,宽带移动通信方面的研究。E-mail:jwm602@163.com " ]
收稿日期:2016-08-04,
录用日期:2016-10-1,
纸质出版日期:2017-01-25
移动端阅览
何芳, 王榕, 于强, 等. 加权空谱局部保持投影的高光谱图像特征提取[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):263-273.
Fang HE, Rong WANG, Qiang YU, et al. Feature Extraction of Hyperspectral Images of Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP)[J]. Optics and precision engineering, 2017, 25(1): 263-273.
何芳, 王榕, 于强, 等. 加权空谱局部保持投影的高光谱图像特征提取[J]. Editorial Office of Optics and Precision Engineeri, 2017,25(1):263-273. DOI: 10.3788/OPE.20172501.0263.
Fang HE, Rong WANG, Qiang YU, et al. Feature Extraction of Hyperspectral Images of Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP)[J]. Optics and precision engineering, 2017, 25(1): 263-273. DOI: 10.3788/OPE.20172501.0263.
为了提高高光谱图像的分类精度,有效利用高光谱图像的空间信息和光谱信息对高光谱图像进行预处理,本文提出了一种新的空谱联合特征提取方法,加权空-谱局部保持投影算法(WSSLPP)。该算法结合高光谱图像的物理特性对高光谱图像进行重构,降低了图像中奇异点的干扰;然后对局部像素近邻保持嵌入(LPNPE)和局部保持投影(LPP)的目标函数进行加权求和,有效融合高光谱图像空间维和光谱维的信息来构建投影矩阵。WSSLPP不仅保留了高光谱图像在空间维上像素间的近邻关系,而且保持了在光谱维上样本的固有结构,有利于高光谱图像的分类。在Indian Pines和PaviU数据库上对该算法进行验证分析,结果表明:基于WSSLPP算法得到的分类精度明显高于其他算法,总体分类精度的最大值分别为99.00%,99.50%,有效提高了高光谱图像的分类精度。
In order to improve the classification accuracy of Hyperspectral images (HSI) and preprocess HSI by effectively using the spatial and spectral information of HIS
a new spatial-spectral feature extraction method
Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP) is proposed in this paper. The HSI was reconstructed combining the physical characters of HSI to avoid the interference of singular point; then the target functions of locality pixel neighbor preserving embedding (LPNPE) and locality preserving projection (LPP) were weighted and summed
thus the spatial and spectral dimension information of HSI was effectively fused to construct the projection matrix. WSSLPP not only keeps the pixel neighborhood in spatial domain
but also keeps the implicit structure of samples in spectral domain
which helps for the HIS classification. The benchmark verification on Indian Pines and PaviU database show that the classification accuracy resulted from WSSLPP algorithm is significantly higher than that from other algorithms
and the overall classification accuracy is 99.00% and 99.50% respectively
effectively improving the HSI classification accuracy.
黄鸿,杨媚,张满菊. 基于稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学精密工程,2013, 21(11):2922-2930.
HUANG H, YANG M, ZHANG M J. Hyperspectral image classification via sparse discriminant manifold embedding[J].Opt. Precision Eng., 2013, 21(11):2922-2930.(in Chinese)
王忠良,冯燕,王丽. 推扫式高光谱谱间压缩感知成像与重构[J]. 光学精密工程,2014, 22(11):3129-3135.
WANG ZH L, FENG Y, WANG L. Compressive sensing imaging and reconstruction of pushbroom hyperspectra[J].Opt. Precision Eng., 2014, 22(11):3129-3135.(in Chinese)
张成业,秦其明,陈理,等. 高光谱遥感岩矿识别的研究进展[J]. 光学精密工程,2015, 23(8):2407-2418.
ZHANG CH Y, QIN Q M, CHEN L, et al.. Research and development of mineral identification utilizing hyperspectral remote sensing[J].Opt. Precision Eng., 2015,23(8):2407-2418.(in Chinese)
宋金伟,张忠伟,陈晓敏. 利用线性预测与查表法的高光谱图像压缩[J]. 光学精密工程,2013,21(8):2201-2208.
SONG J W, ZHANG ZH W, CHEN X M. Hyperspectral imagery compression via linear prediction and lookup tables[J].Opt. Precision Eng., 2013, 21(8):2201-2208.(in Chinese)
唐中奇,付光远,陈进,等. 基于多尺度分割的高光谱图像稀疏表示与分类[J]. 光学精密工程,2015,23(9):2708-2714.
TANG ZH Q, FU G Y, CHEN J, et al.. Multiscale segmentation-based sparse coding for hyperspectral image classification[J].Opt. Precision Eng., 2015, 23(9):2708-2714.(in Chinese)
王晓飞, 侯传龙, 阎秋静,等. 基于相关向量机的高光谱图像噪声评估算法[J]. 红外与激光工程, 2014, 43(12):4159-4163.
WANG X F, HOU CH L, YAN Q J, et al.. Noise estimation algorithm based on relevance vector machine for hyperspectral imagery[J].Infrared and Laser Engineering, 2014, 43(12):4159-4163.(in Chinese)
李昌国,郭科. 应用自适应预测器排序的三阶预测高光谱图像无损压缩[J]. 光学精密工程,2014,22(3):760-769.
LI CH G, GUO K. Lossless compression of hyperspectral images using three-stage prediction based on adaptive predictor reordering[J].Opt. Precision Eng., 2014,22(3):760-769.(in Chinese)
ZHOU Y C, PENG J T, CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1082-1095.
黄鸿,曲焕鹏. 基于半监督稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学精密工程,2014,22(2):434-442.
HUANG H, QU H P. Hyperspectral remote sensing image classification based on SSDE[J]. Opt. Precision Eng., 2014, 22(2):434-442.(in Chinese)
刘嘉敏,罗甫林,黄鸿,等. 应用相关近邻局部线性嵌入算法的高光谱遥感影像分类[J]. 光学精密工程,2014,22(6):1668-1676.
LIU J M, LUO F L, HUANG H, et al.. Hyperspectral image classification by related neighbor locally linear embedding algorithm[J]. Opt. Precision Eng., 2014, 22(6):1668-1676.(in Chinese)
金鹏磊.空-谱联合高光谱数据降维与分类方法研究[D].西安电子科技大学,2014.
JIN P L.Researches on spatial-spectral based dimensionality reduction and classification of hyperspectral data[D]. Xi'an:Xidian University, 2014.(in Chinese)
BANDOS T V, BRUZZONE L, CAMPS-VALLS G. Classification of hyperspectral image with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3):862-873.
KUO B C, LANDGREBE D A. Nonparametric weighted feature extraction for classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5):1096-1105.
LU X, LI X. Multiresolution imaging[J]. IEEE Transactions on Cybernetics, 2014, 44(1):149-160.
XIAO Y, ZHU Z, ZHAO Y, et al.. Topographic NMF for data representation[J]. IEEE Transactions on Cybernetics, 2014, 44(10):1762-1771
WANG R, NIE F P, YANG X J, et al.. Robust 2DPCA with non-greedy-norm maximization for image analysis[J]. IEEE Transactions on Cybernetics, 2015, 45(5):1108-1112.
练秋生,石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展[J]. 自动化学报, 2015, 41(2):240-260.
LIAN Q SH, SHI B SH, CHEN SH ZH. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2):240-260.(in Chinese)
HE X, YAN S, HU Y, et al.. Face recognition using laplacian faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3):328-340.
HE X, CAI D, YAN S, et al.. Neighborhood preserving embedding[C]. Proceedings of the 10th IEEE Conference on Computer Vision,2005,2:1208-1213.
VELASCO-FORERO S, MANIAN V. Improving hyperspectral image classification using spatial preprocessing[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2):297-301.
PHILLIPS R D, BLINN C E, WATSON L T, et al.. An adaptive noise-filtering algorithm for AVIRIS data with implications for classification accuracy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9):3168-3179.
KANG X D, LI S T, BENEDIKTSSON J A. Spectral-Spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2666-2677.
HUANG X, ZHANG L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4173-4185.
HUANG X, ZHANG L, LI P. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2):260-264.
FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al.. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3804-3814.
MOSER G, SERPICO S B. Combining support vector machines and Markov random fields in an integrated framework for contextual image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2734-2752.
LI J, BIOUCAS-DIAS J M, PLAZA A.Spectral-Spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3):809-823.
HUANG X, ZHANG L. An SVM ensemble approach combining spectral, structural, semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):257-272.
邓承志, 张绍泉, 汪胜前,等. L1稀疏正则化的高光谱混合像元分解算法比较[J]. 红外与激光工程, 2015, 44(3):1092-1097.
DENG CH ZH, ZHANG SH Q, WANG SH Q, et al.. Hyperspectral unmixing algorithm based on L1 regularization[J].Infrared and Laser Engineering, 2015, 44(3):1092-1097.(in Chinese)
黄鸿,郑新磊. 加权空-谱与最近邻分类器相结合的高光谱图像分类[J]. 光学精密工程,2016,24(4):873-881.
HUANG H, ZHENG X L.Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J].Opt. Precision Eng., 2016,24(4):873-881.(in Chinese)
PU H Y, CHEN ZH, WANG B. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(11):7008-7022.
0
浏览量
415
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构