浏览全部资源
扫码关注微信
大连理工大学 工业装备结构分析国家重点实验室 汽车工程学院, 辽宁 大连 116024
[ "赵剑 (1980-), 男, 河北石家庄人, 教授, 博士生导师, 2008年于西安电子科技大学获博士学位, 主要从事非线性传感器、智能微结构和多稳态柔性机构等方面的研究。E-mail:jzhao@dlut.edu.cn" ]
高仁璟 (1964-), 女, 山东烟台人, 教授, 博士生导师, 主要从事左手材料、生物传感器、电路与系统等方面的研究。E-mail:renjing@dlut.edu.cn GAO Ren-jing, E-mail:renjing@dlut.edu.cn
收稿日期:2016-10-11,
录用日期:2016-11-15,
纸质出版日期:2017-03-25
移动端阅览
赵剑, 张淑敏, 高仁璟. 基于构型优化的高阶模态微质量传感器灵敏度提升方法[J]. 光学 精密工程, 2017,25(3):656-662.
Jian ZHAO, Shu-min ZHANG, Ren-jing GAO. Structure optimization based sensitivity improving method forhigh order mode multi-stepped cantilever mass sensor[J]. Optics and precision engineering, 2017, 25(3): 656-662.
赵剑, 张淑敏, 高仁璟. 基于构型优化的高阶模态微质量传感器灵敏度提升方法[J]. 光学 精密工程, 2017,25(3):656-662. DOI: 10.3788/OPE.20172503.0656.
Jian ZHAO, Shu-min ZHANG, Ren-jing GAO. Structure optimization based sensitivity improving method forhigh order mode multi-stepped cantilever mass sensor[J]. Optics and precision engineering, 2017, 25(3): 656-662. DOI: 10.3788/OPE.20172503.0656.
高灵敏度是微质量传感器准确探测细菌、病毒和气体等物质的关键指标。虽然借助微型化的高阶模态梁振动可以有效提升探测灵敏度,但微尺度效应也降低了传感器的抗环境干扰能力。因此,如何在特定尺度约束下提升高阶模态传感器的灵敏度已成为谐振式微传感器设计的前沿问题。本文在研究弹性梁几何构型、压电层尺寸与有效质量分布对振动模态影响关系的基础上,建立了压电驱动多阶梯梁式微质量传感器的灵敏度分析模型,以传感器灵敏度提升最大为目标,建立了高阶振动模态下悬臂梁几何构型优化设计模型,得到了在不同振动模态下具有最高灵敏度的悬臂梁构型,使同尺寸传感器的灵敏度提升了10.0~15.0倍。考虑驱动位置与制造成本约束,设计并研制了具有六阶梯梁结构的高阶模态微质量传感器。实验结果表明,总长度为17.6 mm的六阶梯梁微质量传感器的灵敏度为18.8×10
4
Hz/g,考虑制造误差的影响,其二阶模态灵敏度为同尺寸等截面梁传感器的10.0倍,较一阶模态同尺寸传感器灵敏度提升了19.8倍,从而验证了所提出的高阶模态微质量传感器灵敏度提升方法的有效性和可行性。
High sensitivity serves as the key indicator for micro-mass sensor to accurately detect substances such as bacteria
virus and gases etc. In spite of the fact that the detection sensitivity can be improved by vibration of miniaturized high order mode micro-cantilever
the micro-size effect
at the same time
lowers anti-jamming capability of the sensor. Hence
how to improve the sensitivity of high-order mode sensor under special size constraint has been leading edge problem for sensor design. In this paper
based on the impacts of cantilever configuration
piezoelectric layer size and effective mass distribution on the vibration mode
a sensitivity analysis mode for piezoelectric driving multi-stepped micro-mass sensor was established; and
with sensor sensitivity improvement as the goal
a optimization design model for cantilever configuration in high-order mode was created
thus obtaining a cantilever structure with the highest sensitivity in different vibration modes
which helped achieve a sensitivity improvement of 10.0~15.0 times in sensor of different sizes. Considering the constraint of driving position and manufacturing cost
a high-order mode micro-mass sensor with six-step cantilever structure was designed and developed. The results show that sensitivity of the micro-mass sensor with six-step cantilever structure (overall length: 17.6 mm) is 18.8×10
4
Hz/g. Taking the impact of manufacturing error into consideration
its sensitivity under second-order mode is 10.0 times higher than that of the sensor with cantilever structure of the same size and cross section
with an improvement of 19.8 times compared with sensor of the same size under first-order mode. In this way
effectiveness and feasibility of the method for sensitivity improvement of high-order mode micro-mass sensor are verified.
LUBCZYK D, SIERING C, LÖRGEN J, et al.. Simple andsensitive online detection of triacetone triperoxide explosive [J]. Sensors and Actuators B: Chemical, 2010, 143(2): 561-566.
BURG T P, GODIN M, KNUDSEN S M, et al.. Weighingof biomeolecules, single cells and single nanoparticles in fluid [J]. Nature, 2007, 446(2):1066-1069.
MERTENS J, ROGERO C, CALLEJA M, et al.. Label-free detection of DNA hybridization based onhydration-induced tension in nucleic acid films [J]. Nature Nanotechnology, 2008, 3: 301-307.
CARTER R M, MEKALANOS J J, JACOBS M B, et al.. Quartz crystal microbalance detection of Vibrio cholerae O139 serotype [J]. Journal of immunologicalmethods, 1995, 187(1): 121-125.
PARK I S, KIM N. Thiolated Salmonella antibodyimmobilization onto the gold surface of piezoelectric quartz crystal [J]. Biosensors and Bioelectronics, 1998, 13(10): 1091-1097.
ANSARI M Z, CHO C, KIM J, et al.. Comparisonbetween deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers [J]. Sensors, 2009, 9(4): 2706-2718.
高仁璟, 赵剑.基于槽式悬臂梁结构的微质量传感器设计[J].光学 精密工程, 2012, 20(1):102-108.
GAO R J, ZHAO J.Design and analysis of micro-mass sensor based on I-shaped cross-section cantilever [J]. Opt. Precision Eng., 2012, 20(1):102-108.(in Chinese)
SHEN Z, SHIH W Y, SHIH W H. Mass detection sensitivity of piezoelectric cantilevers with a nonpiezoelectric extension [J]. Review of Scientific Instruments, 2006, 77(6): 065101.
YI J W, SHIH W Y, SHIH W H. Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers [J]. Journal of Applied Physics, 2002, 91(3): 1680-1686.
LIAO H S, HUANG K Y, CHANG C S. Cantilever-based mass sensor using high order resonances for liquid environment [C]. Advanced Intelligent Mechatronics (AIM), 2011: 652-655.
LOCHON F, DUFOUR I, REBIERE D. An alternativesolution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions [J]. Sensors andActuators B: Chemical, 2005, 108(1):979-985.
GHATKESAR M K, BARWICH V, BRAUN T, et al.. Highermodes of vibration increase mass sensitivity in nanomechanical microcantilevers [J]. Nanotechnology, 2007, 18(44): 445502.
YI J W, SHIH W Y, MUTHARASAN R, et al.. In situ cell detection using piezoelectric lead zirconate titanate-stainless steel cantilevers [J]. Journal of Applied Physics, 2003, 93(1):619-625.
KUMAR V, BOLEY J W, EKOWALUYO H, et al.. Linear and nonlinear mass sensing using piezoelectrically-actuated microcantilevers [C]. MEMS and Nanotechnology, 2010, 2:57-65.
0
浏览量
315
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构