浏览全部资源
扫码关注微信
1.浙江师范大学 精密机械研究所, 浙江 金华 321004
2.吉林大学 机械科学与工程学院, 吉林 长春 130025
[ "陈松 (1988-), 男, 江西丰城人, 讲师, 博士, 2011年于浙江师范大学获得学士学位, 2016年于吉林大学获得博士学位, 主要从事压电驱动与控制技术、微小机械与精密机械的研究。E-mail:chensong@zjnu.edu.cn" ]
阚君武 (1965-), 男, 吉林榆树人, 教授, 博士生导师, 2003年于吉林大学获得博士学位, 2005年中科院长春光机所博士后出站, 主要从事能量回收与自供电技术、精密机械与微小机械等方面研究。E-mail:jutkjw@163.com KAN Jun-wu, E-mail:jutkjw@163.com
收稿日期:2016-09-10,
录用日期:2016-10-20,
纸质出版日期:2017-03-25
移动端阅览
陈松, 刘勇, 阚君武, 等. 微型压电泵中腔高对气泡滞留的影响规律[J]. 光学 精密工程, 2017,25(3):672-679.
Song CHEN, Yong LIU, Jun-wu KAN, et al. Influence of pump-chamber height on bubble retention in piezoelectric micro-pump[J]. Optics and precision engineering, 2017, 25(3): 672-679.
陈松, 刘勇, 阚君武, 等. 微型压电泵中腔高对气泡滞留的影响规律[J]. 光学 精密工程, 2017,25(3):672-679. DOI: 10.3788/OPE.20172503.0672.
Song CHEN, Yong LIU, Jun-wu KAN, et al. Influence of pump-chamber height on bubble retention in piezoelectric micro-pump[J]. Optics and precision engineering, 2017, 25(3): 672-679. DOI: 10.3788/OPE.20172503.0672.
气泡滞留会严重地损害微型压电泵的输出性能,因此减少气泡滞留将有效地提高压电泵系统的稳定性和可靠性。泵腔作为气泡滞留的主要区域,同时是决定输出性能的重要元素,所以改变腔高将对气泡滞留产生重要的影响。本文从气泡压力降和输出压力两个方面建立数学模型,以此分析腔高对气泡滞留的影响规律,最后通过气泡滞留实验进行验证。实验结果表明,腔高为0.15 mm时,压电泵具有优良的输出性能和排气泡能力,在进入120个0.02 mL气泡后,压电泵仍具有稳定的输出压力(8.1 kPa)和输出流量(4.2 mL/min);腔高为0.05 mm和0.20 mm时,压电泵在进入一个气泡后即丧失了工作能力,排气泡能力差,而腔高为0 mm和0.10 mm时,压电泵分别进入47和70个气泡后丧失了工作能力。实验表明选取合理的腔高可以有效地减少气泡的滞留。
Since bubble retention may cause serious damage to output performance of piezoelectric micro-pump
properly reducing bubble retention can effectively improve stability and reliability of the piezoelectric pump system. Pump chamber is the main area for bubble retention and an important element determining the output performance
so change in the chamber height will have significant influence on bubble retention. In this paper
a mathematic model was established based on bubble pressure drop and output pressure to analyze the influence rules of chamber height on bubble retention
and then a bubble retention test was carried out verify the results. It indicates that when the chamber is 0.15 mm high
the piezoelectric pump has excellent output performance and ability to exclude bubbles
and after 120 0.02 mL bubbles entering the chamber
the pump still has a stable output pressure (8.1 kPa) and output flow (4.2 mL/min); when the chamber height is 0.05 mm and 0.20 mm
the piezoelectric pump is unable to work after a bubble enters
with a weak ability of excluding bubbles; when the chamber height is 0 mm and 0.10 mm
the piezoelectric pump is unable to work respectively after 47 and 70 bubbles enter. The results show that reasonable chamber height can effectively reduce bubble retention.
MA H K, CHEN R H, HSU Y H. Development of a piezoelectric-driven miniature pump for biomedical applications [J]. Sensors & Actuators A Physical, 2015, 234:23-33.
阚君武, 杨志刚, 程光明, 等.压电泵的研究与发展[J].光学 精密工程, 2002, 10(6):619-625.
KAN J W, YANG ZH G, CHENG G M, et al.. Research on piezoelectric pump and its development [J]. Opt. Precision Eng., 2002, 10(6): 619-625. (in Chinese)
彭太江, 杨志刚, 程光明, 等.双腔体压电泵的设计[J].光学 精密工程, 2009, 17(5):1078-1085.
PENG T J, YANG ZH G, CHENG G M, et al.. Design of double-chamber piezoelectric pump [J]. Opt. Precision Eng., 2009, 17(5):1078-1085. (in Chinese)
刘勇, 杨志刚, 吴越, 等.压电泵吸程出流现象及其成因[J].光学 精密工程, 2011, 19(5):1104-1109.
LIU Y, YANG ZH G, WU Y, et al.. Analysis on sucking process outfloe phenomenon of piezoelectric pump [J]. Opt. Precision Eng., 2011, 19(5):1104-1109. (in Chinese)
WANG X Y, MA Y T, YAN G Y, et al.. High flow-rate piezoelectric micropump with two fixed ends polydimethylsiloxane valves and compressible spaces [J]. Sensors & Actuators A Physical, 2014, 218(10):94-104.
HUANG J, ZHANG J, WANG S, et al.. Analysis of the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes [J]. Chinese Journal of Mechanical Engineering, 2014, 27(3):628-634.
吴越. 压电泵动力学分析与优化设计[D]. 长春: 吉林大学, 2013.
WU Y. Dynamic Analysis and Optimal Design of Piezoelectric Pump [D]. Changchun: Jilin University, 2013. (in Chinese)
DOLŽAN T, PEČAR B, MOŽEK M, et al.. Self-priming bubble tolerant microcylinder pump [J]. Sensors & Actuators A Physical, 2015, 233:548-556.
CHEN S, LIU Y, SHEN Y H, et al.. The Structure of wheel check valve influence on air block phenomenon of piezoelectric micro-pump [J]. Micromachines, 2015, 6(11):1745-1754.
王皓. 微流控芯片的微机械往复无阀泵技术研究[D]. 北京: 中国科学院光电技术研究所, 2005.
WANG H. Study on the micro mechanical valve-less pump of lab-on-a-chip [D]. Beijing: China Academy of Sciences Institute of Optoelectronics, 2005. (in Chinese)
蒋丹, 李松晶, 杨平.气泡对无阀微泵动态特性影响的实验研究[J].实验流体力学, 2010, 24(3):34-38
JIANG D, LI S J, YANG P. Experimental study on the influence of bubbles on dynamic characteristics of valve-less micropump [J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):34-38. (in Chinese)
孙晓锋, 姜德龙, 吕兆升, 等.不同容积比的双腔串联压电泵测试分析[J].液压与气动, 2015(5):75-78.
SUN X F, JIANG D L, LV ZH SH, et al.. Test analysis on the piezoelectric pump with two chambers in series of different volume ratios [J]. Chinese Hydraulics & Pneumatics, 2015(5):75-78. (in Chinese)
RICHTER M, LINNEMANN R, WOIAS P. Robust design of gas and liquid micropumps [J]. Sensors & Actuators A Physical, 1998, 68(1-3):480-486.
INMAN W, DOMANSKY K, SERDY J, et al.. Design, modeling and fabrication of a constant flow pneumatic micropump [J]. Journal of Micromechanics & Microengineering, 2007, 17(5):102-107.
杨树臣, 程光明, 刘国君, 等.微型压电泵系统的设计研究[J].光学 精密工程, 2005, 13(3):318-323.
YANG SH C, CHENG G M, LIU G J, et al.. Design of piezoelectric micro pump [J]. Opt. Precision Eng., 2005, 13(3):318-323. (in Chinese)
王淑云, 阚君武, 马继杰, 等.腔高对压电液压驱动器性能的影响[J].纳米技术与精密工程, 2011, 9(6):515-520.
WANG SH Y, KAN J W, MA J J, et al.. Influence of pump-chamber height on performance of piezohydraulic actuator [J]. Nanotechnology and Prscision Engneering, 2011, 9(6):515-520. (in Chinese)
NIEZRECKI C, SCHUELLER J K, BALASUBRAMANIAN K, et al.. Piezoelectric-based Fluid Bulk Modulus Sensor [J]. Journal of Intelligent Material Systems & Structures, 2004, 15(15):893-899.
WONG H, RADKE C J, MORRIS S. Motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow [J]. Journal of Fluid Mechanics, 1995, 292(-1):95-110.
刘勇. 轮式阀微型压电泵的设计理论及试验研究[D]. 长春: 吉林大学, 2012.
LIU Y. Theoretical & Experimental Study on Wheel Valve Micro-Piezoelectric Pump [D].Changchun: Jilin University, 2012. (in Chinese)
王淑云, 阚君武, 马继杰, 等.腔高对压电液压驱动器性能的影响[J].纳米技术与精密工程, 2011, 9(6):515-520.
WANG SH Y, KAN J W, MA J J, et al.. Influence of pump-chamber height on performance of piezohydraulic actuator [J]. Nanotechnology and Prscision Engneering, 2011, 9(6):515-520. (in Chinese)
0
浏览量
308
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构