浏览全部资源
扫码关注微信
1.长春理工大学 机电工程学院, 吉林 长春 130022
2.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
李耀彬 (1969-), 男, 辽宁锦州人, 研究员, 硕士生导师, 主要从事精密机械设计及检测、光电测量与控制方面的研究。E-mail:liyaobin7025@163.com LI Yao-bin, E-mail:liyaobin7025@163.com
[ "于化东 (1961-), 男, 吉林松原人, 博士, 教授, 博士生导师, “863”计划专家委员会委员, “973”项目首席专家, 1998年于日本千叶大学获得博士学位, 主要从事精密超精密加工技术、微纳制造与检测技术方面的研究。E-mail:yuhd@cust.edu.cn" ]
收稿日期:2016-11-10,
录用日期:2016-12-8,
纸质出版日期:2017-03-25
移动端阅览
李耀彬, 于化东, 王强龙, 等. 螺栓连接悬臂梁超谐响应特性试验研究[J]. 光学 精密工程, 2017,25(3):720-728.
Yao-bin LI, Hua-dong YU, Qiang-long WANG, et al. Super-harmonic resonance experiment about bolt connected cantilever beam[J]. Optics and precision engineering, 2017, 25(3): 720-728.
李耀彬, 于化东, 王强龙, 等. 螺栓连接悬臂梁超谐响应特性试验研究[J]. 光学 精密工程, 2017,25(3):720-728. DOI: 10.3788/OPE.20172503.0720.
Yao-bin LI, Hua-dong YU, Qiang-long WANG, et al. Super-harmonic resonance experiment about bolt connected cantilever beam[J]. Optics and precision engineering, 2017, 25(3): 720-728. DOI: 10.3788/OPE.20172503.0720.
针对光电设备中广泛采用的螺栓连接形式,采用单螺栓连接悬臂梁模型,对螺栓连接引起的结构振动特性的改变进行实验。利用激振器和振动信号采集设备,结合快速傅立叶分析方法指出螺栓连接模型在一定条件下有超谐共振响应现象。模型的谐振频率随着扭矩的增大呈先增大后减小的现象。结构在相同扭矩下,第一阶谐振频率随着激励幅值的增大而减小,结构呈渐软非线性。给定1/2和1/3倍谐振频率下的正弦激励,系统能量随着激励幅值的增大而趋向于固有频率处。结构在低预紧扭矩下,非线性项中二次项对结构响应起主要作用;在较高预紧下,非线性项中三次非线性项对结构响应起主要作用。该实验结果对开展后续连接结构的非线性振动特性的研究有一定的理论和指导意义。
A single bolt connection cantilever model is used to analyze the difference of vibrational property due to bolt-joint which is widely used in optoelectronic devices. The phenomenon of super-harmonic resonance due to bolt joint connection is verified using the shaker experiment combined with the signal acquisition equipment. In the case that the torque incerease
the resonance frequency of the model increase first and then decrease. The first resonance frequency decrease when the excitation amplitude decrease and the nonlinear structure characteristic is soft nonlinear. The energy inclined to the natural frequency when the excitation amplitude become large while the system excited under the sinusoidal 1/2 and 1/3 times the resonant frequency. When the system is under low pretension
quadratic nonlinear terms in the structural response plays the major role; while at higher pretension
cubic nonlinear term in nonlinear terms of the structural response plays the major role. The results about research has some theoretical and guidance about subsequent nonlinear vibration characteristic calculation.
ČELIČ D, BOLTEČAR M. Identification of the dynamic properties of joints using frequency-response functions [J]. Journal of Sound and Vibration, 2008, 317(1-2): 158-174.
IRANZAD M, AHMADIAN H. Identification of nonlinear bolted lap joint models [J]. Computers & Structures, 2012, 96-97:1-8.
SONG Y, HARTWIGSEN C J, MCFARLAND D M, et al.. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements [J]. Journal of Sound and Vibration, 2004, 273(1-2): 249-276.
BEARDS C. Damping in structural joints [J]. Shock and Vibration Information Center the Shock and Vibration Digest, 1982, 14(6): 9-11.
GAUL L, LENZ J. Nonlinear dynamics of structures assembled by bolted joints [J]. Acta Mechanica, 1997, 125(1-4): 169-181.
QIN Z, HAN Q, CHU F. Bolt loosening at rotating joint interface and its influence on rotor dynamics [J]. Engineering Failure Analysis, 2016, 59: 456-466.
ERITEN M, KURT M, LUO G, et al.. Nonlinear system identification of frictional effects in a beam with a bolted joint connection [J]. Mechanical Systems and Signal Processing, 2013, 39(1-2): 245-264.
ZHAO B, ZHAO Y, FENG J, et al.. Numerical and experimental investigation of the torsional stiffness of flexible disc couplings [J]. International Journal of Mechanical Sciences, 2016, 114: 207-216.
KARIM Y, BLANZE C. Vibration reduction of a structure by design and control of a bolted joint [J]. Computers & Structures, 2014, 138: 73-85.
陈予恕, 曹登庆, 黄文虎.近代机械非线性动力学与优化设计技术的若干问题[J].机械工程学报, 2007, (11): 17-26.
CHEN Y SH, CAO D Q, HUANG W H. Issues on modern mechaincal nonlinear dynamics and optical design technology [J]. Chinese Journal of Mechanical Engineering, 2007, (11): 17-26. (in Chinese)
HOU L, CHEN Y S, LU Z Y, et al.. Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load [J]. Nonlinear Dynamics, 2015, 81(1-2): 531-547.
ABDELHAFEZ H M. Resonance of multiple frequency excitated systems with quadratic, cubic and quartic non-linearity [J]. Mathematics and Computers in Simulation, 2002, 61(1): 17-34.
ZHOU S, SONG G, SUN M, et al.. Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation [J]. International Journal of Non-Linear Mechanics, 2016.
IBRAHIM R A, PETTIT C L. Uncertainties and dynamic problems of bolted joints and other fasteners [J]. Journal of Sound and Vibration, 2005, 279(3-5): 857-936.
崔秀英.悬臂梁受迫振动的频谱分析[J].振动·测试与诊断, 1995(4): 31-34.
CUI X Y. Spectrum analysis about cantilever by forced vibration [J].Journal of Vibration Measurement & Diagnosis, 1995(4): 31-34. (in Chinese)
Nonlinear system identification in structural dynamics: current status and future directions [J].
IWAN W D. A distributed-element model for hysteresis and its steady-state dynamic response [J]. Journal of Applied Mechanics, 1966, 33(4): 893- & .
AHMADIAN H, JALALI H. Identification of bolted lap joints parameters in assembled structures [J]. Mechanical Systems and Signal Processing, 2007, 21(2): 1041-1050.
CRAWLEY E F, ODONNELL K J. Force-state mapping identification of nonlinear joints [J]. Aiaa Journal, 1987, 25(7): 1003-1010.
CRAWLEY E F, AUBERT A C. Identification of nonlinear structural elements by force-state mapping [J]. Aiaa Journal, 1986, 24(1): 155-162.
JALALI H, AHMADIAN H, MOTTERSHEAD J E. Identification of nonlinear bolted lap-joint parameters by force-state mapping [J]. International Journal of Solids and Structures, 2007, 44(25-26): 8087-8105.
LIU J, CHEN X, GAO J, et al.. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study [J]. Mechanical Systems and Signal Processing, 2016.
BLACHOWSKI B, GUTKOWSKI W. Effect of damaged circular flange-bolted connections on behaviour of tall towers, modelled by multilevel substructuring [J]. Engineering Structures, 2016, 111: 93-103.
ABID M, KHAN A, NASH D H, et al.. Optimized bolt tightening strategies for gasketed flanged pipe joints of different sizes [J]. International Journal of Pressure Vessels and Piping, 2016.
ZHU S, SHAO G, WANG Y, et al.. Mechanical behavior of the CFRP lattice core sandwich bolted splice joints [J]. Composites Part B: Engineering, 2016, 93: 265-272.
LIU J, OUYANG H, PENG J, et al.. Experimental and numerical studies of bolted joints subjected to axial excitation [J]. Wear, 2016, 346-347: 66-77.
田士涛, 吴清文, 贺帅, 等.空间机械臂锁紧机构等效线性化分析及验证[J].光学 精密工程, 2016, 24(3): 590-599.
TIAN SH T, WU Q W, HE SH.Linear analysis and practical tests of fixation mechanisms in space robotic arm [J].Opt. Precision Eng., 2016, 24(3): 590-599. (in Chinese)
王强龙, 伞晓刚, 刘震宇.螺栓连接条件下结构振动模态的时频分析方法[J].机械设计与制造, 2016, 7.
WANG Q L, SAN X G, LIU ZH Y. Model analysis of structure with bolt connections using the method of transient response and frequency transformation [J]. Machinery Design & Manufacture, 2016, 7. (in Chinese)
WORDEN G R T. Nonlinearity in structural dynamics detection [J]. Identification and Modelling, 2001.
陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社, 2007.
CHEN SH H. Quantitative Analysis of Strongly Nonlinear Vibration System [M].Beijing:Science Press, 2007.(in Chinese)
0
浏览量
16
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构