浏览全部资源
扫码关注微信
宁夏大学 数学统计学院, 宁夏 银川 750021
刘国军 (1978-), 男, 宁夏吴忠人, 博士, 教授, 硕士生导师, 2000年、2003年于宁夏大学分别获得学士、硕士学位, 2010年于西安电子科技大学获得博士学位, 主要从事小波、偏微分方程图像处理及其应用、图像质量评价等方面的研究。E-mail:liugj@nxu.edu.cn LIU Guo-jun, E-mail:liugj@nxu.edu.cn
[ "高丽霞 (1991-), 女, 宁夏固原人, 硕士研究生, 主要从事图像处理, 图像质量评价等方面的研究。E-mail:18295398631@163.com" ]
收稿日期:2016-12-21,
录用日期:2017-1-15,
纸质出版日期:2017-03-25
移动端阅览
刘国军, 高丽霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学 精密工程, 2017,25(3):742-748.
Guo-jun LIU, Li-xia GAO, Li-qi CHEN. Pooling strategy for full-reference IQA via general means[J]. Optics and precision engineering, 2017, 25(3): 742-748.
刘国军, 高丽霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学 精密工程, 2017,25(3):742-748. DOI: 10.3788/OPE.20172503.0742.
Guo-jun LIU, Li-xia GAO, Li-qi CHEN. Pooling strategy for full-reference IQA via general means[J]. Optics and precision engineering, 2017, 25(3): 742-748. DOI: 10.3788/OPE.20172503.0742.
为了设计与人的主观评价相吻合的全参考型客观图像质量评价(IQA)算法。针对不同算法提取的局部特征,利用广义平均的非线性性质,提出了2种池化策略,以提高结构相似度(SSIM),梯度结构相似度(GSSIM),特征相似度指标(FSIM)的评价能力。在TID2008和TID2013数据库中进行数值实验,讨论了所有失真类型非线性参数的选择以及不同失真类型之间非线性参数的变化。结果表明,采用广义平均池化策略能提高IQA算法的有效性。4种客观评价指标Spearman等级相关系数(SROCC)、Kendall等级相关系数(KROCC)、Pearson线性相关系数(PLCC)和均方误差根(RMSE)表明所提算法性能优于已有的算法,与人的视觉系统具有一致性。
In order to design a full-reference objective Image Quality Assessment (IQA) algorithm that consistent with subjective evaluation. Based on local feature extracted according to different algorithms and nonlinear properties of generalized means strategy
two pooling strategies were proposed to promote the ability to evaluate Structural Similarity Image Measurement (SSIM)
Gradient Structural Similarity Image Measurement (GSSIM) and Feature Similarity Index (FSIM). Numerical test was conducted in TID2008 and TID2013 database
selections of various distortion non-linear parameters as well as the changes of non-linear parameters among different distortion types were discussed. The results show that the application of general means strategies could promote the effectiveness of IQA algorithm. 4 kinds of objective evaluation indexes
which are Spearman's Rank-Order Correlation Coefficient (SROCC)
Kendall's Rank-Order Correlation Coefficient (KROCC)
Pearson's Linear Correlation Coefficient (PLCC) and the Root Mean Square Error (RMSE)
indicate that the algorithm proposed herein is superior to the existing algorithm
proves the consistency with human visual system.
CHANDLER D M. Seven challenges in image quality assessment: past, present, and future research [J]. ISRN Signal Processing, 2013, 8(1): 1-53.
LIN W S, KUO CC J. Perceptual visual quality metrics: A survey [J]. Journal of Visual Communication & Image Representation, 2011, 22(4): 297-312.
WANG Z, LI Q. Information content weighting for perceptual image quality assessment [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185-1198.
XUE W F, ZHANG L, MOU X Q, et al.. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index [J]. IEEE Transactions on Image Processing, 2013, 23(2): 684-695.
WANG Z, BOVIK A C, SHEIKH H R, et al.. Image quality assessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
ZHANG L, ZHANG L, MOU X Q, et al.. FSIM: a feature similarity index for image quality assessment [J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
LI C, BOVIK A C. Content-partitioned structural similarity index for image quality assessment [J]. Signal Processing Image Communication, 2010, 25(7): 517-526.
HUANG Y, CHEN X, DING X.A harmonic means pooling strategy for structural similarity index measurement in image quality assessment [J]. Multimedia Tools & Applications, 2016, 75(5): 2769-2780.
CHEN G H, YANG C L, XIE S L. Gradient-based structural similarity for image quality assessment [C].13th IEEE International Conference on Image Processing, 2006:2929-2932.
LI Q H, FANG Y M, XU J T. A novel spatial pooling strategy for image quality assessment [J]. Journal of Computer Science and Technology, 2016, 31(2): 225-234.
SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms [J]. IEEE Transaction on Image Processing, 2006, 15(11): 3440-3451.
PONOMARENKO N, LUKIN V, ZELENSKY A, et al.. TID 2008-A database for evaluation of full-reference visual quality assessment metrics [J]. Advances of Modern Radio Electronics, 2009, 10: 30-45.
BONDZULIC B P, PETROVIC V S. Additive models and separable pooling, A new look at structural similarity [J]. Signal Processing, 2014, 97(7): 110-119.
ROUSE D M, HEMAMI SS. Understanding and simplifying the structural similarity metric [C].Proceedings of the International Conference on Image Processing, 2008:1188-1191.
PONOMARENKO N, JIN L, LEREMEIEV O, et al.. Image database TID2013: Peculiarities, results and perspectives [J]. Signal Processing: Image Communication, 2015, 30(1): 55-77.
骆媛, 张科, 纪明.增强无人机态势感知的彩色图像融合方法[J].红外与激光工程, 2016, 45(S1): 1-7.
LUO Y, ZHANG K, JI M. Color image fusion method for enhance situation awareness of ICA [J]. Infrared and Laser Engineering, 2016, 45(S1): 1-7.(in Chinese)
崔法毅.色度马氏距离图与灰度图特征自适应融合的彩色人脸识别[J].红外与激光工程, 2015, 44(4): 1382-1389.
CUI F Y. Color face recognition using adaptive feature fusion based on chroma mahalanobis distance map and gray map [J]. Infrared and Laser Engineering, 2015, 44(4): 1382-1389. (in Chinese)
0
浏览量
723
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构