浏览全部资源
扫码关注微信
1.三峡大学 计算机与信息学院, 湖北 宜昌 443002
2.湖北省水电工程智能视觉监测重点实验室 (三峡大学), 湖北 宜昌 443002
[ "徐光柱 (1979-), 男, 甘肃兰州人, 博士, 副教授, 2002年、2007年于兰州大学分别获得学士、博士学位, 主要从事数字图像处理、计算机视觉、神经网络等方面的研究。E-mail:xgz@ctgu.edu.cn" ]
[ "张柳 (1990-), 女, 湖北武汉人, 硕士研究生, 2012年于中南财经政法大学获得学士学位, 主要从事数字图像处理、神经网络方面的研究。E-mail:zhanglliu0727@sina.com" ]
雷帮军 (1973-), 男, 湖北宜昌人, 博士, 教授, 1995年、1998年于西安交通大学分别获得学士、硕士学位, 2003年于荷兰德尔夫特理工大学获得博士学位, 主要从事数字图像处理、计算机视觉等方面的研究。E-mail:bangjun.lei@ieee.org LEI Bang-jun, E-mail: bangjun.lei@ieee.org
收稿日期:2016-12-06,
录用日期:2017-1-14,
纸质出版日期:2017-03-25
移动端阅览
徐光柱, 张柳, 邹耀斌, 等. 自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割[J]. 光学 精密工程, 2017,25(3):756-764.
Guang-zhu XU, Liu ZHANG, Yao-bin ZOU, et al. Retinal blood segmentation with adaptive PCNN and matched filter[J]. Optics and precision engineering, 2017, 25(3): 756-764.
徐光柱, 张柳, 邹耀斌, 等. 自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割[J]. 光学 精密工程, 2017,25(3):756-764. DOI: 10.3788/OPE.20172503.0756.
Guang-zhu XU, Liu ZHANG, Yao-bin ZOU, et al. Retinal blood segmentation with adaptive PCNN and matched filter[J]. Optics and precision engineering, 2017, 25(3): 756-764. DOI: 10.3788/OPE.20172503.0756.
针对眼底图像中血管与背景间对比度低以及血管自身结构复杂等因素对视网膜血管分割所带来的问题,本文提出了一种具有自适应连接值的脉冲耦合神经网络(PCNN)与高斯匹配滤波器相结合的视网膜血管分割方法。首先,利用对比度受限制的自适应直方图均衡化(CLAHE)技术与二维高斯匹配滤波器对血管区域的对比度进行有效增强。然后,利用经验阈值选择出一定的血管区域作为初始种子区域。接着,将带有快速连接机制的PCNN与种子区域增长思想相结合,通过自适应动态设置PCNN中的连接强度系数和停止条件,实现眼底图像中血管区域的自动生长。整个算法在DRIVE视网膜图像库中进行了测试,实验结果表明,相比于不使用动态连接强度系数与停止条件的方法,所提出算法的灵敏度从49.79%提高至70.39%,准确度从95%提高到95.39%。证明了该算法具有较好的分割精确度和应用价值。
According to the several problems on retinal vessel segmentation caused by many factors such as low contrast of vessels and background in fundus image and the complicated structure of blood vessel
a retinal vessel segmentation method combining the Pulsed Coupled Neural Network (PCNN) which has self-adaptive linking value
with the Gaussian matched filter was proposed in the paper. Firstly
the contrast of the retinal vessel area was effectively enhanced by application of Contrast Limited Adaptive Histogram Equalization (CLAHE) and two-dimensional Gaussian matched filter. Then
a certain blood vessel area was selected as primary seed area by experience threshold. On the basis of above
the PCNN contained fast linking system was combined with seed area growth thought to set the linking strength coefficient and stopping conditions of PCNN according to the self-adaptive dynamics
result in the automatic growth of vessel area in fundus image was realized. The whole algorithm was tested in DRIVE image database
the results show that
as compared with the method not using the dynamic linking strength coefficient and stopping conditions
the proposed algorithm has had its sensitivity increased from 49.79% to 70.39% and the accuracy has been increased from 95% to 95.39%
which proves that such algorithm has better segmentation accuracy and application values.
姚畅, 陈后金, 李居朋.基于过渡区提取的视网膜血管分割方法[J].电子学报, 2008(5):974-978.
YAO CH, CHEN H J, LI J P.Segmentation of retinal blood vessels based on transition region extraction [J]. Acta Electronica Sinica , 2008(5): 974-978. (in Chinese)
RICCI E, PERFETTI R. Retinal blood vessel segmentation using line operators and support vector classification [J]. IEEE Transactions on Medical Imaging , 2007, 26(10): 1357-1365.
TTOLIA Y A, PANAS S M. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering [J]. IEEE Transactions on Medical Imaging , 1998, 17(2): 263-273.
YAO CH, CHEN H. Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Ostu algorithm [J]. Journal of Central South University of Technology , 2009, 16:640-646.
CINSDIKICI M G, AYDIN D. Retinal blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm [J]. Computer Methods and Programs in Biomedicine , 2009, 96(2):85-95.
ECKHORN R, REITBOECK H J, ARNDT M, et al.. Feature linking via synchronization among distributed assemblies: simulation of results from cat cortex [J]. Neural Computation, 1990, 2(3): 293-307.
郑欣, 彭真明.基于活跃度的脉冲耦合神经网络图像分割[J].光学 精密工程, 2013, 21(3):821-827.
ZHENG X, PENG ZH M. Image segmentation based on activity degree with pulse coupled neural networks [J]. Opt. Precision Eng., 2013, 21(3):821-827. (in Chinese)
殷明, 段普宏, 褚标, 等.基于非下采样双树复轮廓波变换和稀疏表示的红外和可见光图像融合[J].光学 精密工程, 2016, 24(7):1763-1771.
YIN M, DUAN P H, CHU B, et al .. Fusion of infrared and visible images combined with NSDTCT and sparse representation [J]. Opt. Precision Eng., 2016, 24(7):1763-1771. (in Chinese)
贾松敏, 徐涛, 董政胤, 等.采用脉冲耦合神经网络的改进显著性区域提取方法[J].光学 精密工程, 2015, 23(3):819-826.
JIA S M, XU T, DONG ZH Y, et al .. Improved salience region extraction algorithm with PCNN [J]. Opt. Precision Eng., 2015, 23(3):819-826. (in Chinese)
MURESAN R C. Pattern recognition using pulse-coupled neural networks and discrete Fourier transforms [J]. Neuro-computing , 2003, 51:487-493.
STEWART R D, FERMIN I, OPPER M. Region growing with pulse-coupled neural networks: an alternative to seeded region growing [J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1557-1562.
陈萌梦, 熊兴良, 张琰, 等. 1种视网膜眼底图像增强的新方法[J].重庆医科大学学报, 2014, 39(8): 1087-1090.
CHEN M M, XIONG X L, ZHANG Y, et al.. A new method for retinal fundus image enhancement [J]. Journal of Chongqing Medical University , 2014, 39(8):1087-1090. (in Chinese)
姚畅, 陈后金.一种新的视网膜血管网络自动分割方法[J].光电子·激光, 2009, 20(2):274-278.
YAO CH, CHEN H J. A novel automated segmentation method for retinal blood vessel network [J]. Journal of Optoelectronics Laser, 2009, 20(2):274-278. (in Chinese)
VIERGEVER M, LUIJTEN P. DRIVE:Digital retinal images for vessel extraction [EB/OL]. http://www.isi.uu.nl/Research/Databases/DRIVE/, 2010 http://www.isi.uu.nl/Research/Databases/DRIVE/, 2010 .
0
浏览量
17
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构