浏览全部资源
扫码关注微信
北京工商大学 计算机与信息工程学院, 北京 100048
[ "蔡强 (1969-), 男, 重庆永川人, 博士, 教授, 1991年、2003年于北京航空航天大学分别获得学士、博士学位, 1994年于北京轻工业学院获得硕士学位, 现为北京工商大学计算机与信息工程学院院长, 主要从事计算机图形学、计算几何、科学可视化、智能信息处理等方面的研究。E-mail:caiq@th.btbu.edu.cn" ]
郝佳云 (1993-), 女, 山西长治人, 学士, 2015年于北京工商大学获得学士学位, 主要从事显著性检测、知识图谱等方面的研究。E-mail:haojiayun_happy@163.com HAO Jia-yun, E-mail:haojiayun_happy@163.com
收稿日期:2016-12-21,
录用日期:2017-1-15,
纸质出版日期:2017-03-25
移动端阅览
蔡强, 郝佳云, 曹健, 等. 结合局部特征及全局特征的显著性检测[J]. 光学 精密工程, 2017,25(3):772-778.
Qiang CAI, Jia-yun HAO, Jian CAO, et al. Salient detection via local and global feature[J]. Optics and precision engineering, 2017, 25(3): 772-778.
蔡强, 郝佳云, 曹健, 等. 结合局部特征及全局特征的显著性检测[J]. 光学 精密工程, 2017,25(3):772-778. DOI: 10.3788/OPE.20172503.0772.
Qiang CAI, Jia-yun HAO, Jian CAO, et al. Salient detection via local and global feature[J]. Optics and precision engineering, 2017, 25(3): 772-778. DOI: 10.3788/OPE.20172503.0772.
针对目前大多数显著性检测方法中采用背景种子以及局部区域对比度显著性检测模型的缺点,本文提出了一种综合考虑局部特征以及全局特征的显著性检测算法。在对图像进行分割之后,算法首先融合了采用多特征方式生成的背景显著图与采用前景区域对比度方式生成的前景显著图,之后使用高斯滤波器对融合后的结果进行优化形成局部特征显著图。其次,在局部特征显著图的基础上提取多种特征的样本集合进行训练,从而得到全局特征显著图。算法最后将第一步生成的局部特征显著图与全局特征显著图进行结合生成最终的显著图。实验部分验证了算法各部分的有效性,并且在3个公开数据集上对文章方法与近年来优秀的显著性检测算法进行了对比,实验结果显示,本文算法在CSSD数据集上的准确率、召回率以及F-measure分别达到了0.837 5、0.743 4和0.813 7,在其它数据集上也有良好表现。实验表明,本文算法能够有效抑制背景区域,并且高亮前景区域,更好地检测出显著目标。
Due to the most of existing salient detection methods have some disadvantages on using background seeds and local area contrast salient detection model
a visual saliency detection algorithm named salient detection
which combines local feature and global feature
was proposed. After image segmentation
the algorithm firstly applied a background image created by multi-feature methods and a foreground saliency image created by foreground area contrast method
then
the fusion results was optimized by using Gaussian filter and the local feature saliency image was formed. Secondly
the sample set of various features was collected based on the local feature saliency image for practice and finally the global feature saliency image was obtained. At last
it combined the local feature saliency image produced in the first step with the global feature saliency image and created the final saliency image. In part of experiment
the proposed algorithm showed great results of precision
recall rate and F-measure on CSSD data set
with values of 0.837 5
0.743 4 and 0.813 7 respectively
the performance on other data set was also perfect. The results show that the proposed algorithm can effectively suppress the background area
highlight foreground area and detect the salient target better.
ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11):1254-1259.
ZHANG C J, XUE Z, ZHU X B, et al .. Boosted random contextual semantic space based representation for visual recognition [J]. Information Sciences, 2016, 369:160-170.
JIANG H, WANG J, YUAN Z, et al .. Salient object detection: a discriminative regional feature integration approach [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2013:2083-2090.
CHENG M M, MITRA N J, HUANG X, et al .. Global contrast based salient region detection [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 37(3):409-416.
SUN X S, YAO H X, JI R R, et al .. Toward statistical modeling of saccadic eye-movement and visual saliency [J]. IEEE Transactions on Image Processing, 2014, 23(11):4649-4662.
PERAZZI F, KRAHENBUHL P, PRITCH Y, et al .. Saliency filters: contrast based filtering for salient region detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2012:733-740.
ZHANG L, TONG M H, MARKS T K, et al .. SUN: a bayesian framework for saliency using natural statistics [J]. Journal of Vision, 2008, 8(7):1-20.
BORJI A. Boosting bottom-up and top-down visual features for saliency estimation [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2012:438-445.
TONG N, LU H, XIANG R, et al .. Salient object detection via bootstrap learning [C]. The IEEE Conference on Computer Vision and Pattern Recognition, 2015:1884-1892.
ZHANG X Y, WANG S, YUN X. Bidirectional active learning: a two-way exploration into unlabeled and labeled data set [J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(12):3034-3044.
ZHANG X Y, WANG S, ZHU X, et al .. Update vs. upgrade: modeling with indeterminate multi-class active learning [J]. Neurocomputing, 2015, 162:163-170.
贾松敏, 徐涛, 董政胤, 等.采用脉冲耦合神经网络的改进显著性区域提取方法[J].光学 精密工程, 2015, 23(3): 819-826.
JIA S M, XU T, DONG ZH Y, et al .. Improved salience region extraction algorithm with PCNN [J]. Opt. Precision Eng., 2015, 23(3): 819-826. (in Chinese)
张颖颖, 张帅, 张萍, 等.融合对比度和分布性的图像显著性区域检测[J].光学 精密工程, 2014, 22(4): 1012-1019.
ZHANG Y Y, ZHANG SH, ZHANG P, et al .. Detection of salient maps by fusion of contrast and distribution [J]. Opt. Precision Eng., 2014, 22(4): 1012-1019. (in Chinese)
ACHANTA R, SHAJI A, SMITH K, et al .. Slic superpixels [R]. School of Computer and Communications Sciences, EPFL Technical Report 149300, 2010.
BORJI A, SIHITE D N, ITTI L. Salient object detection: a benchmark [J]. IEEE Transactions on Image Processing, 2015, 24(12):414-429.
OHTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(1):62-66.
高恒振, 万建伟, 粘永健, 等.组合核函数支持向量机高光谱图像融合分类[J].光学 精密工程, 2011, 19(4):878-883.
GAO H ZH, WAN J W, NIAN Y J, et al .. Fusion classification of hyperspectral image by composite kernels support vector machine [J]. Opt. Precision Eng., 2011, 19(4): 878-883. (in Chinese)
SIAGIAN C, ITTI L. Rapid biologically-inspired scene classification using features shared with visual attention [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(2):300-12.
HAREL J, KOCH C, PERONA P. Graph-based visual saliency [C]. Neural Information Processing Systems, 2006:545-552.
HOU X, ZHANG L. Saliency detection: a spectral residual approach [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007:1-8.
MANNAN S K, KENNARD C, HUSAIN M. The role of visual salience in directing eye movements in visual object agnosia[J]. Current Biology, 2009, 19(6):247-248.
REYNOLDS J H, DESIMONE R. Interacting roles of attention and visual salience in V4 [J]. Neuron, 2003, 37(5):853-863.
RUTISHAUSER U, WALTHER D, KOCH C, et al .. Is bottom-up attention useful for object recognition [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2004:37-44.
JIANG B, ZHANG L, LU H, et al .. Saliency detection via absorbing markov chain [C]. IEEE International Conference on Computer Vision, 2013:1665-1672.
YANG C, ZHANG L, LU H, et al .. Saliency detection via graph-based manifold ranking [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2013:3166-3173.
ACHANTA R, HEMAMI S, ESTRADA F, et al .. Frequency-tuned salient region detection [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2009:1597-1604.
0
浏览量
327
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构