浏览全部资源
扫码关注微信
1.北京工业大学 应用数理学院, 北京 100124
2.北京市精密测控技术与仪器工程技术研究中心, 北京 100124
3.电子信息控制重点实验室, 四川 成都 610036
[ "李静楠 (1993-), 男, 四川南充人, 硕士研究生, 2015年于北京工业大学获得学士学位, 主要从事微波光子学技术方面的研究。E-mail:lijingnan@emails.bjut.edu.cn" ]
王大勇 (1968-), 男, 安徽芜湖人, 博士, 教授, 1989年于武汉华中理工大学获得学士学位, 1994年于中国科学院西安光机所获得博士学位, 主要从事光学信息处理和光通信方面的研究。E-mail:wdyong@bjut.edu.comWANG Da-yong,E-mail:wdyong@bjut.edu.com
周涛 (1978-), 男, 陕西汉中人, 博士, 研究员, 1998年于长春光学精密机械学院 (现长春理工大学) 获得学士学位, 2003年于浙江大学获得博士学位, 主要从事基于微波光子学、高速信息处理等新概念、新原理、新技术的研究。E-mail:zhj_zht@163.comZHOU Tao,E-mail:zhj_zht@163.com
收稿日期:2016-11-09,
录用日期:2016-12-6,
纸质出版日期:2017-04-25
移动端阅览
王云新, 李静楠, 杜浩峥, 等. 基于强度-相位级联调制的微波光子下变频法[J]. 光学 精密工程, 2017,25(4):827-834.
Yun-xin WANG, Jing-nan LI, Hao-zheng DU, et al. Microwave photonic down-conversion method using intensity-phase cascaded modulation[J]. Optics and precision engineering, 2017, 25(4): 827-834.
王云新, 李静楠, 杜浩峥, 等. 基于强度-相位级联调制的微波光子下变频法[J]. 光学 精密工程, 2017,25(4):827-834. DOI: 10.3788/OPE.20172504.0827.
Yun-xin WANG, Jing-nan LI, Hao-zheng DU, et al. Microwave photonic down-conversion method using intensity-phase cascaded modulation[J]. Optics and precision engineering, 2017, 25(4): 827-834. DOI: 10.3788/OPE.20172504.0827.
为了优化微波光子下变频的无杂散动态范围,结合带反馈控制的强度调制器和相位调制器,提出并验证了基于强度和相位级联调制的微波光子下变频方法。通过理论推导和仿真分析了下变频原理以及本振功率对系统性能的影响,搭建了强度-相位级联调制的微波光子下变频系统,利用自行研制的直流偏置反馈控制模块确保强度调制器的工作状态稳定,对系统进行了性能测试。实验结果表明,增益和无杂散动态范围分别为-6.65 dB和108.62 dB/Hz
2/3
,与传统的强度调制器级联下变频链路相比,增益和无杂散动态范围分别提高了3.56 dB和19.87 dB。基于强度和相位级联调制的下变频方法仅需要单个偏置电压,且可通过反馈模块实现工作状态的稳定控制,系统结构简单、性能稳定,可实现大动态范围的微波光子下变频。
In order to optimize the Spurious Free Dynamic Range (SFDR) of microwave photonic frequency down-conversion
a microwave photonic down-conversion method based on intensity and phase cascaded modulation was proposed and verified by using a Mach-Zehnder modulator (MZM) with feedback control module and a phase modulator (PM). The principle of frequency down-conversion and influence of power of local oscillator on system performance were derived theoretically and analyzed in simulation. The MZM-PM cascade microwave photonic down-conversion system was built
in which a self-developed DC bias feedback module was applied to enable the MZM at a stable operating state. Then the performance of system was tested experimentally. The results demonstrate that the gain and SFDR are-6.65 dB and 108.62 dB/Hz
2/3
respectively
which have been improved 3.56 dB and 19.87 dB respectively compared with the conventional MZM-MZM cascade down-conversion system. In addition
microwave photonic down-conversion method based on intensity and phase cascaded modulation only requires a single DC bias voltage
and the stability of operating state can be controlled by the feedback module. The system can offer microwave photonic frequency down-conversion in high dynamic range with a simple structure and stable performance.
COX C H Ⅲ. Analog Optical Links:Theory and Practice[M]. Cambridge:Cambridge University Press, 2004.
SEEDS A J. Microwave photonics[J]. IEEE Transactions on Microwave Theory & Techniques, 2002, 50(3):877-887.
YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335.
SEEDS A J, WILLIAMS K J. Microwave photonics[J]. Journal of Lightwave Technology, 2006, 24(12):4628-4641.
CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6):319-330.
COX C H Ⅲ, ACKERMAN E I. Microwave photonics:Past, present and future[C]. International Topical Meeting on Microwave Photonics, IEEE, 2008:9-11.
MINASIAN R A. Photonic signal processing of microwave signals[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(2):832-846.
ROULSTON D J. Low-noise photoparametric up-converter[J]. IEEE Journal of Solid-State Circuits, 1968, 3(4):431-440.
MACDONALD R I, SWEKLA B E. Frequency domain optical reflectometer using a GaAs optoelectronic mixer[J]. Applied Optics, 1990, 29(31):4578-4582.
KOLNER B H, DOLFI D W. Intermodulation distortion and compression in an integrated electro-optic modulator[J]. Applied Optics, 1987, 26(17):3676-3680.
GOPALAKRISHNAN G K, MOELLER R P, HOWERTON M M, et al.. A low-loss downconverting analog fiber-optic link[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9):2318-2323.
GOPALAKRISHNAN G K, BURNS W K, BULMER C H. Microwave-optical mixing in LiNbO 3 modulators[J]. Microwave Theory and Techniques, IEEE Transactions on Microwave Theory & Techniques, 1993, 41(12):2383-2391.
HAAS B M, URICK V J, MCKINNEY J D, et al.. Dual-wavelength linearization of optically phase-modulated analog microwave signals[J]. Journal of Lightwave Technology, 2008, 26(15):2748-2753.
HAAS B M, MURPHY T E. Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering[J]. IEEE Photonics Journal, 2011, 3(1):1-12.
LI P X, PAN W, ZOU X H, et al.. High-efficiency photonic microwave downconversion with full-frequency-range coverage[J]. IEEE Photonics Journal, 2015, 7(4):5500907.
CHAN E H W, MINASIAN R A. Microwave photonic downconverter with high conversion efficiency[J]. Journal of Lightwave Technology, 2012, 30(23):3580-3585.
HOWERTON M M, MOELLER R P, GOPAL-AKRISHNAN G K, et al.. Low-biased fiber-optic link for microwave downconversion[J]. IEEE Photonics Technology Letters, 1996, 8(12):1692-1694.
URICK V J, DIEHL J F, DRAA M N, et al.. Wideband analog photonic links:some performance limits and considerations for multi-octave implementations[J]. SPIE, 2012, 8259:825904.
贾喻鹏, 王大勇, 钟欣, 等.基于光谱分析的强度调制器半波电压测量[J].北京工业大学学报, 2015, 41(12):1867-1871.
JIA Y P, WANG D Y, ZHONG X, et al.. Measurement method for the half-wave voltage of intensity modulator based on spectrometer method[J]. Journal of Beijing University of Technology, 2015, 41(12):1867-1871. (in Chinese)
0
浏览量
452
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构