浏览全部资源
扫码关注微信
1.西南医科大学 医学信息与工程学院, 四川 泸州 646000
2.宜宾学院 计算物理重点实验室, 四川 宜宾 644000
[ "唐碧华 (1977-), 女, 四川绵阳人, 硕士, 副教授, 2006年于四川大学获得硕士学位, 主要从事激光技术及应用方面的研究。E-mail:angiua@126.com" ]
罗亚梅 (1978-), 女, 四川自贡人, 博士, 研究员, 2010年于四川大学获得博士学位, 主要从事激光技术及应用方面的研究。E-mail:luoluoeryan@126.comLUO Ya-mei,E-mail:luoluoeryan@126.com
收稿日期:2016-10-10,
录用日期:2016-12-13,
纸质出版日期:2017-04-25
移动端阅览
唐碧华, 郑尚彬, 张勇, 等. 高斯涡旋光束通过像散透镜后的相位奇异特性[J]. 光学 精密工程, 2017,25(4):835-841.
Bi-hua TANG, Shang-bin ZHENG, Yong ZHANG, et al. Phase singularities of Gaussian vortex beams through an astigmatic lens[J]. Optics and precision engineering, 2017, 25(4): 835-841.
唐碧华, 郑尚彬, 张勇, 等. 高斯涡旋光束通过像散透镜后的相位奇异特性[J]. 光学 精密工程, 2017,25(4):835-841. DOI: 10.3788/OPE.20172504.0835.
Bi-hua TANG, Shang-bin ZHENG, Yong ZHANG, et al. Phase singularities of Gaussian vortex beams through an astigmatic lens[J]. Optics and precision engineering, 2017, 25(4): 835-841. DOI: 10.3788/OPE.20172504.0835.
光场相位奇异特性研究在奇点光学研究领域中具有非常重要的意义。本文运用广义惠更斯-菲涅尔衍射积分公式推导出高斯涡旋光束通过像散透镜后的光场分布表达式,并研究了它在几何焦平面上的相位奇异特性。结果表明,高斯涡旋光束通过像散透镜后在几何焦平面上存在相位奇点,相位奇点受到透镜的像散系数、光束束腰宽度和涡旋离轴量等参数的影响。在一定条件下,几何焦平面上出现直刃型位错线或光涡旋。当像散系数为0时,光涡旋出现在
y
轴上。当像散系数不为0,而涡旋离轴量为0时,会出现直刃型位错线或光涡旋,且各自的位置都非常稳定。当像散系数、涡旋离轴量或束腰宽度改变时,光涡旋会发生移动。这对光学元器件的设计和涡旋光束相位奇点的控制有一定的参考价值。
The research of phase singularity in light fields is significant in singular optics. Herein
the expressions of field distribution and phase singularity distribution for Gaussian vortex beams through an astigmatic lens were derived based on the generalized Huygens-Fresnel diffraction integral formula
in order to study phase singularities at geometrical focal plane. The results show that the phase singularities that appear at the geometrical focal plane when Gaussian vortex beams pass through an astigmatic lens
are dependent on the astigmatic coefficient
waist width and off-axis distance of vortex. Under certain conditions
a straight edge dislocation or an optical vortex appears at the geometrical focal plane. The optical vortex locates on the
y
axis when the astigmatic coefficient is zero. Otherwise with the off-axis distance of zero
there is a fixed straight edge dislocation or a stable optical vortex. The optical vortex moves with the variation of astigmatic coefficient
off-axis distance or waist width. Thoes results are proved to be references for the design of optical components and the control of vortex beam phase singularities.
SOSKIN M S, VASNETSOV M V. Singular optics[J]. Prog. Opt., 2001, 42:219-276.
NYE J F, BERRY M V. Dislocations in wave trains[J]. Proc. R. Soc. Lond. Ser. A, 1974, 336(1605):165-190.
BAZHENOV V Y, SOSKIN M S, VASNETSOV M V. Screw dislocations in light wave fronts[J]. J. Mod. Opt., 1992, 39(5):985-990.
HE H, HECKENBERG N R, RUBINSZTEIN-DUNLOP H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms[J]. J. Mod. Opt., 1995, 42(1):217-223.
SIMPSON N B, ALLEN L, PADGETT M J. Optical tweezers and optical spanners with Laguerre-Gaussian modes[J]. J. Mod. Opt., 1996, 43(12):2485-2491.
BERZANSKIS A, MATIJOSIUS A, PISKARSKAS A, et al.. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Opt. Commun., 1997, 140(4-6):273-276.
陆璇辉, 黄慧琴, 赵承良, 等.涡旋光束和光学涡旋[J].激光与光电子学进展, 2008, 45(1):50-56.
LU X H, HUANG H Q, ZHAO CH L, et al.. Optical vortex beams and optical vortices[J]. Laser & Optoelectronics Progress, 2008, 45(1):50-56. (in Chinese)
柴忠洋, 王祺昌, 曾臻, 等.基于光楔阵列产生光学涡旋阵列的研究[J].光子学报, 2015, 44(4):426005-426009.
CHAI ZH Y, WANG Q CH, ZENG ZH, et al.. Research on the generation of optical vortex array using a wedge array[J]. Acta Photonica Sinica, 2015, 44(4):426005-426009.(in Chinese)
王希瑞, 郑旭阳, 李新忠, 等.涡旋光束拓扑荷值的柱面镜测量方法研究[J].激光杂志, 2016, 37(5):26-28.
WANG X R, ZHENG X Y, LI X ZH, et al.. Topological charge determination of Laguerre-Gaussian beam using cylindrical lens[J]. Laser Journal, 2016, 37(5):26-28. (in Chinese)
孙海滨, 刘婷婷, 孙平.光学涡旋应用于微测量的研究进展[J].激光杂志, 2015, 36(6):8-11.
SUN H B, LIU T T, SUN P. Research progress of applications of optical vortex in micro-measurement[J]. Laser Journal, 2015, 36 (6):8-11. (in Chinese)
李冬, 吴逢铁, 李攀, 等.像散对周期性局域空心光束的影响[J].光学学报, 2014, 34(s1):s126002.
LI D, WU F T, LI P, et al.. Influence of astigmatism on periodic bottle beam[J]. Acta Optica Sinica, 2014, 34(s1):s126002.(in Chinese)
李长伟, 冯浩.部分相干双曲余弦-高斯光束通过像散透镜的光束参数变化[J].琼州学院学报, 2015, 22(2):52-56.
LI CH W, FENG H. Changes in the beam parameters of partially coherent cosh-Gaussian beams after the passage through an astigmatic lens[J]. Journal of Qiongzhou University, 2015, 22(2):52-56.(in Chinese)
林惠川, 蒲继雄.像散对径向偏振无衍射光束产生的影响[J].激光与光电子学进展, 2015, 52(1):012602.
LIN H CH, PU J X. Influence of astigmatism on the generation of radial polarized non-diffracting beams[J]. Laser & Optoelectronics Progress, 2015, 52(1):012602.(in Chinese)
CHEN H T, GAO ZH, HUANG W G. Transformation of the V-dipole by an astigmatic lens[J]. J. Mod. Opt., 2014, 61(20):1625-1633.
YAN H W, LV B D. Transformation of the optical vortex dipole by an astigmatic lens[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(6):065706.
YAN H W, LV B D. Vortex-edge dislocation interaction in the presence of an astigmatic lens[J]. Opt. Commun., 2009, 282(5):717-726.
FREUND I, SHVARTSMAN N. Wave-field phase singularities:the sign principle[J]. Phys. Rev. A, 1994, 50(6):5164-5172.
方亮, 甘雪涛, 赵建林.利用柱透镜调控涡旋光束的拓扑结构[J].光子学报, 2014, 43(3):0326001.
FANG L, GAN X T, ZHAO J L. Topological transformation of vortex beams using cylindrical lens[J]. Acta Photonica Sinica, 2014, 43(3):0326001.(in Chinese)
0
浏览量
444
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构