浏览全部资源
扫码关注微信
1.解放军理工大学 气象海洋学院, 江苏 南京 211101
2.解放军93318部队气象台, 辽宁 开原 112300
3.南京英恩特环境技术有限公司, 江苏 南京 210007
[ "刘西川 (1985-), 男, 河北清河人, 讲师, 2007年、2010年、2014年于解放军理工大学分别获得学士、硕士、博士学位, 主要从事大气探测与大气遥感方面的研究。E-mail:liuxc2012@hotmail.com" ]
高太长 (1958-), 男, 山西太原人, 教授, 博士生导师, 1982年于原空军气象学院获得学士学位, 主要从事大气探测理论与技术方面的研究。E-mail:2009gaotc@gmail.comGAO Tai-chang,E-mail:2009gaotc@gmail.com
收稿日期:2016-09-20,
录用日期:2016-11-20,
纸质出版日期:2017-04-25
移动端阅览
刘西川, 高太长, 胡云涛, 等. 基于单帧双脉冲成像的降水微物理特征测量仪[J]. 光学 精密工程, 2017,25(4):842-849.
Xi-chuan LIU, Tai-chang GAO, Yun-tao HU, et al. Precipitation micro-physical characteristics sensor based on double-pulse in single frame imaging[J]. Optics and precision engineering, 2017, 25(4): 842-849.
刘西川, 高太长, 胡云涛, 等. 基于单帧双脉冲成像的降水微物理特征测量仪[J]. 光学 精密工程, 2017,25(4):842-849. DOI: 10.3788/OPE.20172504.0842.
Xi-chuan LIU, Tai-chang GAO, Yun-tao HU, et al. Precipitation micro-physical characteristics sensor based on double-pulse in single frame imaging[J]. Optics and precision engineering, 2017, 25(4): 842-849. DOI: 10.3788/OPE.20172504.0842.
为了实现对降水粒子尺度、形状、速度等微物理特征的同步测量,提出了一种基于单帧双脉冲成像的降水粒子测量方法,并搭建了降水微物理特征测量仪样机,该样机由脉冲光源、面阵图像传感器、以数字信号处理(DSP)芯片为核心的采集与控制单元、数据处理单元组成。然后研究了利用点扩散函数进行图像复原的方法,以及利用曝光参数进行粒子捕获概率修正的方法,并利用定标小球进行了检验。最后使用该仪器在南京地区进行了降雨外场实验,并与OTT雨滴谱仪进行对比。实验结果表明:仪器可以同步测量雨滴的形状、轴比、速度与尺度等微物理特征,与经验模型具有良好的一致性;与OTT雨滴谱仪的雨滴谱分布和降雨强度有很好的一致性,二者测量降雨强度的标准偏差为1.57 mm/h,相关系数达到96%。该仪器对降水微物理特征具有更好的测量效果,可以在野外长期无人值守运行,在大气物理研究、数值天气预报模式、水文学研究等领域有着广阔的应用前景。
In order to realize synchronize measurement of size
shape
fall velocity and other micro-physical characteristics of precipitation particles
an imaging method based on the double exposures in one frame was proposed
and a Precipitation Micro-physical Characteristics Sensor (PMCS) was established. The PMCS prototype consisted of pulse light source
planar array image sensor
signal processing and control unit with a Digital Signal Processor (DSP) as the core and data processing unit. Then an image restoration method based on the point spread function and capture probability correction approach using exposure parameters were investigated and verified with calibration balls. Finally
the PMCS was employed to field experiments in Nanjing
where the measurement results were compared with the one of OTT distrometer. The results indicate that the PMCS is able to measure the shape
axis ratio
size and fall velocity of raindrops effectivity accurately and synchronously. The measured values of those characteristics are hihly consistent with empirical models. The raindrop size distribution and rainrate measured by PMCS and OTT disdrometer show good consistency for the average error of rainrate is 1.57 mm/h and the correlation coefficient can reach 96%. The proposed instrument can provide comprehensive measurement of micro-physical features and realize unattended long-term stable operation
thus having a promising prospect in the fields such as atmospheric physics
numerical weather forecasting model
hydrological research and etc..
高太长.降水测量技术现状与展望[J].气象水文装备, 2012, 23(6):1-7.
GAO T CH. Current and prospective development of the precipitation measuring techniques[J]. Meteorological and Hydrological Equipments, 2012, 23(6):1-7. (in Chinese)
杨艳蓉, 曾明剑.雷达资料同化对暴雨预报影响的数值模拟研究[J].气象科学, 2012, 32(2):145-152.
YANG Y R, ZENG M J. Numerical simulation analysis on radar data assimilation for summer rainstorm forecast[J]. Journal of the Meteorological Sciences, 2012, 32(2):145-152. (in Chinese)
陈聪, 银燕, 陈宝君.黄山不同高度雨滴谱的演变特征[J].大气科学学报, 2015, 38(3):388-395.
CHEN C, YIN Y, CHEN B J. Raindrop size distribution at different altitudes in Mt Huang[J].Trans. Atmos. Sci., 2015, 38(3):388-395. (in Chinese)
汪亭玉, 陈家璧.雨滴在船舶大气激光通信中的遮挡作用[J].光学 精密工程, 2014, 22(10):2652-2658.
WANG T Y, CHEN J B. Shading effect of rain drops in ship free space laser communication[J]. Opt. Precision Eng., 2014, 22(10):2652-2658. (in Chinese)
JONES D M A. The shape of raindrops[J]. Journal of Meteorology, 1959, 16(4):504-510.
余东升, 徐青山, 徐赤东, 等.雨滴谱测量技术研究进展[J].大气与环境光学学报, 2011, 6(6):403-408.
YU D SH, XU Q SH, XU CH D, et al.. Progress of measurement of raindrop size distribution[J]. Jounal of Atmospheric and Environmental Optics, 2011, 6(6):403-408. (in Chinese)
刘西川, 高太长, 刘磊, 等.雨滴微物理特征研究及测量技术进展[J].地球科学进展, 2013, 28(11):1217-1226.
LIU X CH, GAO T CH, LIU L, et al.. Advances in microphysical features and measurement techniques of raindrops[J]. Advances in Earth Sciences, 2013, 28(11):1217-1226. (in Chinese)
JOSS J, WALDVOGEL A. A raindrop spectrograph with automatic analysis[J]. Pure Applied Geophysics, 1967, 68(1):240-246.
LÖFFLER-MANG M, JOSS J. An optical disdrometer for measuring size and velocity of hydrometeors[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(2):130-139.
高太长, 江志东, 刘西川, 等.线阵光学降水现象自动测量系统[J].光学 精密工程, 2012, 20(10):2184-2191.
GAO T CH, JIANG ZH D, LIU X CH, et al.. Optical precipitation auto-measurement system based on linear image sensor[J]. Opt. Precision Eng., 2012, 20(10):2184-2191. (in Chinese)
KATHIRAVELU G, LUCKE T, NICHOLS P. Rain drop measurement techniques:a review[J]. Water, 2016, 8(1):29.
SZAKÁLL M, DIEHL K, MITRA S K, et al.. A wind tunnel study on the shape, oscillation, and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm[J]. Journal of the Atmospheric Sciences, 2009, 66(3):755-765.
YU C K, HSIEH P R, YUTER S E, et al.. Measuring droplet fall speed with a high-speed camera:indoor accuracy and potential outdoor applications[J]. Atmos. Meas. Tech., 2016, 9(4):1755-1766.
BATTAGLIA A, RUSTEMEIER E, TOKAY A, et al.. PARSIVEL snow observations:a critical assessment[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(2):333-344.
SCHUUR T J, RYZHKOV A V, ZMIC D S, et al.. Drop size distributions measured by a 2D video disdrometer:comparison with dual-polarization radar data[J]. Journal of Applied Meteorology, 2001, 40(6):1019-1034.
WOOD N B, L'ECUYER T S, BLIVEN F L, et al.. Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity[J]. Atmospheric Measurement Techniques, 2013, 6(12):3635-3648.
THURAI M, BRINGI V N, PETERSEN W A, et al.. Drop axis ratio distributions in stratiform and convective rain[C]. The Sixth European Conference on Radar in Meteorology and Hydrology. Sibiu, Romania:ERAD, 2010.
BEARD K V, BRINGI V N, THURAI M. A new understanding of raindrop shape[J]. Atmospheric Research, 2010, 97:396-415.
THURAI M, BRINGI V N, SZÁKALL M, et al.. Drop shapes and axis ratio distributions:comparison between 2D video disdrometer and wind-tunnel measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7):1427-1432.
THURAI M, BRINGI V N. Drop axis ratios from a 2D video disdrometer[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(7):966-978.
ATLAS D, SRIVASTAVA R C, SEKHON R S. Doppler radar characteristics of precipitation at vertical incidence[J]. Rev. Geophys., 1973, 11(1):1-35.
MARZUKI, RANDEU W L, KOZU T, et al.. Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-video disdrometer measurement[J]. Atmospheric Research, 2013, 119:23-37.
0
浏览量
312
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构