浏览全部资源
扫码关注微信
哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001
[ "常家庆 (1985-), 男, 湖南衡阳人, 博士研究生, 主要从事界面流体力学、液体分配技术等方面的研究。E-mail:cjq2018@163.com" ]
黄博 (1974-), 男, 湖南汨罗人, 教授, 博士生导师, 1996年、1998年、2007年于哈尔滨工业大学分别获得学士、硕士、博士学位, 主要从事液体分配技术、机器人技术等方面的研究。E-mail:huangbo74@163.com HUANG Bo, E-mail:huangbo74@163.com
收稿日期:2016-07-18,
录用日期:2016-9-21,
纸质出版日期:2017-04-25
移动端阅览
常家庆, 黄博, 刘亚欣. 圆管式压电喷头的液体分配[J]. 光学 精密工程, 2017,25(4):954-962.
Jia-qing CHANG, Bo HUANG, Ya-xin LIU. Liquid distribution of tubular piezoelectric print head[J]. Optics and precision engineering, 2017, 25(4): 954-962.
常家庆, 黄博, 刘亚欣. 圆管式压电喷头的液体分配[J]. 光学 精密工程, 2017,25(4):954-962. DOI: 10.3788/OPE.20172504.0954.
Jia-qing CHANG, Bo HUANG, Ya-xin LIU. Liquid distribution of tubular piezoelectric print head[J]. Optics and precision engineering, 2017, 25(4): 954-962. DOI: 10.3788/OPE.20172504.0954.
针对用于喷墨打印的圆管式压电喷头建立了计算模型,并且根据它的驱动特点选择了合适的边界条件。介绍了仿真软件针对自由表面流动问题的计算原理。然后,以乙二醇水溶液为例,计算了压电喷头分配该溶液的分配过程;利用液滴成像系统获取了不同时刻的液滴图像,验证了建立的模型和数值算法的正确性。最后,计算了压电喷头在不同输入位移、不同黏度以及不同表面张力下的液体分配过程。仿真结果显示:液体分配性能与激励位移密切相关,在72.5 mN/m的表面张力作用下,10 nm的输入位移很难分配黏度为4.0 mPa·s的液体,而15 nm的输入位移在分配黏度为4.0 mPa·s液体时却能够产生卫星液滴。因此,对于某种液体寻找一个合适的激励条件非常重要,过小的激励产生不了液滴,过大的激励则会产生较大甚至多个卫星液滴;增大黏度会延缓或阻滞液滴形成过程,增大表面张力却能加快液滴形成过程。本文的计算方法对于研制新式喷头或者研究喷头的喷射能力均具有指导意义。
A calculation model of droplet ejection process for tubular piezoelectric print heads was established according to its structural parameters. Appropriate boundary conditions were chosen based on driving characteristics of the print head. Then
the calculation principles of simulation software on free surface flow problem were introduced. By taking the mixed solution of ethylene glycol and water as an example
the droplet formation processes were simulated. Pictures of droplets at different moments were obtained by a droplet imaging system and the correctness of the modeling and numerical algorithm was verified. Finally
the droplet formation processes of the print head for different input displacements
different viscosities and different surface tensions were simulated. The simulation shows that the liquid distribution performance is closely related to excitation displacement. With the surface tension fixed at 72.5 mN/m
the liquid with the viscosity of 4.0 mPa·s is difficult to be distributed by a 10 nm input displacement; however
that can be distributed into satellite droplets by a 15 nm input displacement. The results demonstrate that it is very important to find appropriate excitation conditions for liquid distribution. Droplets cannot be produced with too small excitation
while larger or many satellite droplets will be produced with bigger excitation. Increasing viscosity will postpone or restrain droplet formation while increasing surface tension can fasten droplet formation. The proposed calculating method in the paper has guiding significance on developing new print heads or studying the ejection capacities of print heads.
吴美兰, 周雪琴, 李巍, 等.纳米金属喷墨导电墨水研究进展[J].化工进展, 2012, 31(8):1806-1810, 1860.
WU M L, ZHOU X Q, LI W, et al.. Development of inkjet conductive ink[J]. Chemical Industry and Engineering Progress, 2012, 31(8):1806-1810, 1860. (in Chinese)
LIM S. Inkjet printability of electronic materials important to the manufacture of fully printed OTFTs[D]. Kalamazoo:Western Michigan University, 2012. http://scholarworks.wmich.edu/dissertations/61/
史永晶. 基于喷墨印刷的OTFT的制备与性能研究[D]. 无锡: 江南大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10295-2009249827.htm
SHI Y J. Preparation of organic thin-film transistors using inkjet printing technology[D]. Wuxi:Jiangnan University, 2009.(in Chinese)
杨利军, 陆宝春, 朱晓阳, 等.数字化微喷射技术制备聚合物薄膜电阻[J].光学 精密工程, 2015, 23(6):1598-1604.
YANG L J, LU B CH, ZHU X Y, et al.. Fabrication of polymer thin film resistors by a drop-on-demand technology[J]. Opt. Precision Eng., 2015, 23(6):1598-1604. (in Chinese)
TSENG H Y, SUBRAMANIAN V. All inkjet-printed, fully self-aligned transistors for low-cost circuit applications[J]. Organic Electronics, 2011, 12(2):249-256.
熊贤风. 绝缘衬底表面修饰在喷墨打印有机薄膜晶体管中的应用[D]. 合肥: 合肥工业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10359-1014218817.htm
XIONG X F. The application of insulating substrate surface modification in organic thin-film transistors[D]. Hefei:Hefei University of Technology, 2014.
MENGEL M, NIKITIN I. Inkjet printed dielectrics for electronic packaging of chip embedding modules[J]. Microelectronic Engineering, 2010, 87(4):593-596.
CHANG H J, TSAI M H, HWANG W S. The simulation of micro droplet behavior of molten lead-free solder in inkjet printing process and its experimental validation[J]. Applied Mathematical Modelling, 2012, 36(7):3067-3079.
ASAI A, HARA T, ENDO I. One-dimensional model of bubble growth and liquid flow in bubble jet printers[J]. Jpn. J. Appl. Phys., Part 1, 1987, 26(10):1794-1801.
CHEN P H, PENG H Y, LIU H Y, et al.. Pressure response and droplet ejection of a piezoelectric inkjet print head[J]. Int. J. Mech. Sci., 1999, 41(2):235-248.
FROMM J E. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM J. Res. Develop., 1984, 28(3):322-333.
LAI J M, LIN J D, LINLIU K. Numerical investigation of the effect of a transducer pulse on the microfluidic control of a piezoelectric printhead[J]. J. Micro/Nano lith. MEMS MOEMS, , 2010, 9(3):033010.
WU CH H, HWANG W S. The effect of the echo-time of a bipolar pulse waveform on molten metallic droplet formation by squeeze mode piezoelectric inkjet printing[J]. Microelectronics Reliability, 2015, 55(3-4):630-636.
ZHANG H Y, WANG J, LU G D. Numerical investigation of the influence of companion drops on drop-on-demand ink jetting[J]. Journal of Zhejiang University-SCIENCE A, 2012, 13(8):584-595.
薛光怀, 贺永, 傅建中, 等.压电式喷头的微滴喷射行为及其影响因素[J].光学 精密工程, 2014, 22(8):2166-2172.
XUE G H, HE Y, FU J ZH, et al.. Droplet jetting of piezoelectric printhead and corresponding effect factors[J]. Opt. Precision Eng., 2014, 22(8):2166-2172. (in Chinese)
范增华, 荣伟彬, 王乐锋, 等.压电驱动微点胶器的控制与实验[J].光学 精密工程, 2016, 24(5):1042-1049.
FAN Z H, RONG W B, WANG L F, et al.. Control and experiment of micro-dispenser by piezoelectric drive[J]. Opt. Precision Eng., 2016, 24(5):1042-1049. (in Chinese)
SEN A K, DARABI J. Droplet ejection performance of a monolithic thermal inkjet print head[J]. J. Micromech. Microeng., 2007, 17:1420-1427.
TAN H. An adaptive mesh refinement based flow simulation for free-surfaces in thermal inkjet technology[J]. International Journal of Multiphase Flow, 2016, 82:1-16.
FUSTER D, AGBAGLAH G, JOSSERAND C, et al.. Numerical simulation of droplets, bubbles and waves:state of the art[J]. Fluid Dyn. Res., 2009, 41(6):065001.
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100:335-354.
SHIN D Y, GRASSIA P, DERBY B. Numerical and experimental comparisons of mass transport rate in a piezoelectric drop-on-demand inkjet print head[J]. International Journal of Mechanical Sciences, 2004, 46(2):181-199.
CHANG J Q, LIU Y X, HUANG B. Steady state response analysis of a tubular piezoelectric print head[J]. Sensors, 2016, 16(1):81.
BUGDAYCI N, BOGY D B, TALKE F E. Axisymmetric motion of radially polarized piezoelectric cylinders used in ink jet printing[J]. IBM J. Res. Develop., 1983, 27(2):171-180.
0
浏览量
617
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构