浏览全部资源
扫码关注微信
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
[ "刘源 (1984-), 男, 重庆人, 博士后, 讲师, 2010年在哈尔滨工业大学获博士学位, 研究方向为空间攻防、星载电子系统、飞行器任务规划。E-mailspacead@163.com" ]
[ "叶潇 (1992-), 男, 湖北安陆人, 硕士研究生, 2016年于哈尔滨工程大学获学士学位, 研究方向为控制科学与工程。E-mail:trainto11@163.com" ]
HAO Yong, E-mail: haoyong@hrbeu.edu.cn
收稿日期:2016-06-24,
录用日期:2016-9-10,
纸质出版日期:2017-04-25
移动端阅览
刘源, 叶潇, 郝勇, 等. 多脉冲异面交会对接转移轨道的优化[J]. 光学 精密工程, 2017,25(4):987-998.
Yuan LIU, Xiao YE, Yong HAO, et al. Optimization of transfer orbit for multiple-pulse noncoplanar rendezvous and docking[J]. Optics and precision engineering, 2017, 25(4): 987-998.
刘源, 叶潇, 郝勇, 等. 多脉冲异面交会对接转移轨道的优化[J]. 光学 精密工程, 2017,25(4):987-998. DOI: 10.3788/OPE.20172504.0987.
Yuan LIU, Xiao YE, Yong HAO, et al. Optimization of transfer orbit for multiple-pulse noncoplanar rendezvous and docking[J]. Optics and precision engineering, 2017, 25(4): 987-998. DOI: 10.3788/OPE.20172504.0987.
针对三维空间交会对接中的异面非圆轨道转移规划问题,提出了一种基于粒子群算法(PSO)的多脉冲异面交会对接能量最优的转移轨道优化算法。该算法以二体动力学方程及脉冲变轨理论构造空间多脉冲异面交会对接优化模型;通过引入Lambert算法处理终端约束条件,减少未知变量的个数从而简化问题。然后,将追踪飞行器变轨过程中脉冲的作用时刻、方向、大小设计成待优化变量,以交会对接过程中消耗能量、终端约束条件等为目标函数,基于PSO优化了最省燃料转移轨道。在MATLAB中对四脉冲交会对接问题进行了仿真测试,并与相同初始条件下,采用Lambert算法的双脉冲交会对接仿真结果进行了对比。结果显示:在本文所给算例条件下,采用PSO优化的四脉冲交会对接过程所需速度增量为4.4243 km/s,而采用Lambert算法的双脉冲对接过程所需速度增量为11.2691 km/s,前者节省了60%的能量。数据表明,设计方案有效节省了燃料消耗,从而证明了设计方法的有效性。
For the transferring and planning problem on a noncoplanar non-circular orbit in rendezvous and docking of three-dimensional space
an optimization algorithm for transfer orbit of energy optimization of multiple-pulse noncoplanar rendezvous and docking was proposed based on Particle Swarm Optimization (PSO). The two-body correlation dynamic equation and pulse orbit theory were used to construct the optimization model for multiple-pulse noncoplanar rendezvous and docking in space. Then
Lambert algorithm was introduce to handle terminal constraint condition and to decrease the number of unknown variables
so as to simplify the problem. Furthermore
the function time
direction and size of a pulse were designed into variables to be optimized
the energy consumed and the terminal constraint condition during rendezvous and docking were set as the objective function and the transfer orbit that saves the flue was optimized by the PSO. Finally
a simulation test was carried out on the four-pulse rendezvous and docking problem in MATLAB and the simulation results were compared with that of double-pulse rendezvous and docking based on the Lambert algorithm under the same initial condition. The results show that speed increments needed in four-pulse rendezvous and docking with the PSO is 4.4243 km/s
while that in double-pulse rendezvous and docking with Lambert algorithm is 11.2691 km/s. By comparison
the former has saved the energy by 60%. In conclusion
the scheme designed effectively saves the fuel consumption
which verifies the effectiveness of the method designed.
崔乃刚, 王平, 郭继峰, 等.空间在轨服务技术发展综述[J].宇航学报, 2007, 28(4):805-811.
CUI N G, WANG P, GUO J F, et al.. A review of on-orbit servicing[J]. Journal of Astronautics.2007, 28(4):805-811.(in Chinese)
TAUR D R, COVERSTONE-CARROL V, PRU-SSING J E. Optimal impulsive time-fixed orbital rendezvous and interception with path constraints[J]. Journal of Guidance Control and Dynamics, 1995, 18(1):54-60.
赵琳, 李玉玲, 刘源, 等.连续小推力拦截卫星攻击轨道的优化[J].光学 精密工程, 2016, 24(1):178-186.
ZHAO L, LI Y L, LIU Y, et al.. Optimization of attacking orbit for interception satellite with low continuous thrust[J].Opt. Precision Eng., 2016, 24(1):178-186.(in Chinese)
LAWDEN D F. Optimal Trajectories for Space Navigation[M]. London:Butterworths, 1963.
GROSS L R, PRUSSING J E. Optimal multiple-impulse direct ascent fixed-time rendezvous[J].AIAA Journal, 1974, 12(7):885-889.
HUGHES S P, MAILHE L M, JJ Guzman. A comparison of trajectory optimization methods for the impulsive minimum fuel rendezvous problem[J].Advances in the Astronautical Sciences, 2003, 11(3):85-104.
王华, 唐国金.用遗传算法求解双冲量最优交会问题[J].中国空间科学与技术, 2003(1):26-30.
WANG H, TANG G J. Solving optimal rendezvous using two impulses based on genetic algorithms[J]. Chinese Space Science and Technology, 2003(1):26-30. (in Chinese)
KIM Y H, SPENCER D B. Optimal spacecraft rendezvous using genetic algorithms[J]. Journal of Spacecraft and Rockets, 2002, 39(6):859-865.
ABDELKHALIK O, MORTARI D. Nimpluse orbittransfer using genetic algorithm[J]. Journal of Spacecraft and Rockets, 2007, 44 (2):456-460.
卢山, 陈统, 徐世杰.基于自适应模拟退火遗传算法的最优Lambert转移[J].北京航空航天大学学报, 2007, 33(10):1191-1195.
LU S, CHEN T, XU S J. Optimial Lambert transfer based on adaptive simulated annealing genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1191-1195.(in Chinese)
PONTANI M, GHOSH P, CONWAY B A. Particle swarm optimization of multiple-burn rendezvous trajectories[J]. Journal of Guidance Control and Dynamics, 2012, 35(4), 1192-1207.
WEN C X, ZHAO Y S, LI B J, et al.. Solving the relative Lambert's problem and accounting for its singularities[J]. Acta Astronautica, 2014, 97:122-129.
张柏楠.航天器交会对接任务分析与设计[M].北京:科学出版社, 2011:109-110, 262-264.
ZHANG B N. Analysis and Design of Spacecraft Rendezvous and Docking Mission[M]. Beijing:Science Press, 2011:109-110, 262-264.(in Chinese)
BESSETTE C R, SPENCER D B. Optimal space trajectory design:a heuristic-based approach[J]. Advances in Astronautical Sciences, 2006, 6(124):1611-1628.
陈全, 杨震, 罗亚中.基于粒子群算法的多脉冲转移轨迹优化[J].空间控制技术与应用, 2014, 40(5):25-30.
CHEN Q, YANG Z, LUO Y Z. Optimization of multi-impulse orbit transfer based on particle swarm optimization algorithm[J]. Aerospace Control and Application, 2014, 40(5):25-30.(in Chinese)
PONTANI M, CONWAY B B. Optimal low-thrust orbital maneuvers via indirect swarming method[J]. Journal of Optimization Theory and Applications, 2014, 162(1):272-292.
SEDLACZECK K, EBERHARD R.Using augmented lagrangian particle swarm optimization for consrtrained problems in engineering[J]. Structural and Multidisciplinary Optimization, 2006, 32(4):277-286.
HU X, EBERHART R. Solving constrained nonlinear optimization problems with particle swarm optimization[C]. Proceedings of the 6th World Multiconference on Systemics. Cybernetics and Informatics, 2002. https://link.springer.com/chapter/10.1007/11589990_192
VENTER G, SOBIESZCZANSKI-SOBIESKI J. Particle swarm optimization[J]. AIAA Journal, 2003, 4(8):1583-1589.
ZHANG G, ZHOU D, MORTARI D. An approximate analytical method for short-range impulsive orbit rendezvous using relative Lambert solutions[J]. Acta Astronautica, 2012, 81(1):318-324.
0
浏览量
984
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构