浏览全部资源
扫码关注微信
中国民航大学 电子信息与自动化学院, 天津 300300
张红颖 (1978-), 女, 天津人, 博士, 副教授, 硕士生导师, 2001年、2004年、2007年于天津大学分别获得学士、硕士、博士学位, 主要从事图像工程与计算机视觉方面的研究。Email:carole_zhang0716@163.com ZHANG Hong-ying, E-mail:carole_zhang0716@163.com
[ "李灿锋 (1989-), 男, 福建宁德人, 硕士研究生, 2012年于江苏师范大学获得学士学位, 主要从事计算机视觉方面的研究。Email:aizaifujian@yeah.com" ]
收稿日期:2016-10-14,
录用日期:2016-12-9,
纸质出版日期:2017-04-25
移动端阅览
张红颖, 李灿锋. 结合特征在线选择与协方差矩阵的压缩跟踪算法[J]. 光学 精密工程, 2017,25(4):1051-1059.
Hong-ying ZHANG, Can-feng LI. Compressive tracking algorithm combining online feature selection with covariance matrix[J]. Optics and precision engineering, 2017, 25(4): 1051-1059.
张红颖, 李灿锋. 结合特征在线选择与协方差矩阵的压缩跟踪算法[J]. 光学 精密工程, 2017,25(4):1051-1059. DOI: 10.3788/OPE.20172504.1051.
Hong-ying ZHANG, Can-feng LI. Compressive tracking algorithm combining online feature selection with covariance matrix[J]. Optics and precision engineering, 2017, 25(4): 1051-1059. DOI: 10.3788/OPE.20172504.1051.
本文从3个方面对原始压缩跟踪算法进行改进,以提高其在复杂场景下的鲁棒性和准确性。首先,提出一种结合特征在线选择的压缩跟踪算法,通过计算相邻两帧同维特征所服从的高斯分布曲线的Hellinger距离来度量特征的置信水平,从特征池中选择置信水平较高的特征,并融合特征的置信水平构造贝叶斯分类器。然后,在压缩跟踪框架下引入协方差矩阵以增强算法对目标的表达能力,把Haar-like特征和协方差矩阵相结合构建目标模型,取最大响应值所对应的候选样本作为跟踪结果。最后,优化分类器参数的更新方式,根据目标模板与跟踪结果的相似度来自适应更新分类器参数。改进算法的平均跟踪成功率比原算法提高了25%,平均跟踪精度比原算法提高了22%。相比于原始压缩跟踪算法,本文算法具有更高的跟踪鲁棒性和准确性。
To improve robustness and accuracy of original compressive tracking algorithm in complex scenes
improvement measures were carried out from three aspects in this paper. First
a compressive tracking algorithm combining with online feature selection was introduced
then the confidence level of the feature was measured by calculating Hellinger distance in the Gaussian distribution curve to which the same dimensional features of two adjacent frames.By selecting the feature with higher confidence level from the feature pool to construct the Bayesian classifier through integrating the confidence level; then
covariance matrix was introduced under the compressive tracking framework to enhance expressive ability of the algorithm towards the target
subsequently
combined Haar-like with covariance matrix to create the target model and selected the candidate sample corresponding to the maximum response value as the tracking results; finally
updated mode of the classifier parameters was optimized:adaptively updating of the classifier parameters was implemented in accordance with similarity between the target template and tracking results. It indicates that compared with original algorithm
average success rate of proposed algorithm is improved by 25%
and the average tracking accuracy is improved by 22%. Hence
the algorithm proposed in this paper can achieve higher robustness and accuracy than the original compressive tracking algorithm.
LI W Y, WANG P, QIAO H. A survey of visual attention based methods for object tracking[J]. Acta Automatica Sinica, 2014, 40(4):561-576.
MEI X, LING H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272.
陈东成, 朱明, 高文, 等.在线加权多示例学习实时目标跟踪[J].光学 精密工程, 2014, 22(6):1661-1667.
CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014, 22(6):1661-1667. (in Chinese)
孙保基, 张葆, 宋策, 等.基于角点增强改进的TLD目标跟踪算法[J].液晶与显示, 2016, 31(9):921-928.
SUN B J, ZHANG B, SONG C, et al.. Improved TLD object tracking algorithm based on corner reinforced[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(9):921-928. (in Chinese)
毛建森, 屈玉福.基于压缩感知的变尺度目标跟踪技术[J].液晶与显示, 2016, 31(6):497-505.
MAO J S, QU Y F. Tracking of variable scale object based on compressive sensing[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(6):497-505. (in Chinese)
ESLAHI N, AGHAGOLZADEH A. Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization[J]. IEEE Transactions on Image Processing, 2016, 25(7):3126-3140.
ZHANG K H, ZHANG L, YANG M H. Real-time compressive tracking[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy:IEEE , 2012:864-877.
ACHLIOPTAS D. Database-friendly random projections:Johnson-Lindenstrauss with binary coins[J]. Journal of Computer and System Sciences, 2003, 66(4):671-687.
BARANIUK R, DAVENPORT M, DEVORE R, et al.. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3):253-263.
DIACONIS P, FREEDMAN D. Asymptotics of graphical projection pursuit[J]. The Annals of Statistics, 1984, 12(3):739-815.
毛征, 袁建建, 吴珍荣, 等.基于在线特征选择的实时压缩跟踪[J].光学 精密工程, 2014, 22(3):730-736.
MAO ZH, YUAN J J, WU ZH R, et al.. Real-time compressive tracking based on online feature selection[J]. Opt. Precision Eng., 2014, 22(3):730-736. (in Chinese)
卢维, 项志宇, 于海滨, 等.基于自适应多特征表观模型的目标压缩跟踪[J].浙江大学学报 (工学版), 2014, 48(12):2132-2139.
LU W, XIANG ZH Y, YU H B, et al.. Object compressive tracking based on adaptive multi-feature appearance model[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(12):2132-2139.(in Chinese)
WU J J, KARUNAMUNI R J. Profile hellinger distance estimation[J]. Statistics A Journal of Theoretical and Applied Statistics, 2015, 49(4):711-740.
韩文静, 朱俊平, 向直扬, 等.改进的基于多示例学习的目标跟踪方法研究[J].计算机应用与软件, 2013, 30(9):276-279.
HAN W J, ZHU J P, XIANG ZH Y, et al.. An improved target tracking method based on multiple instances learning[J]. Computer Applications and Software, 2013, 30(9):276-279.(in Chinese)
邵枫, 姜求平, 蒋刚毅, 等.基于显著性分析的立体图像视觉舒适度预测[J].光学 精密工程, 2014, 22(6):1631-1638.
SHAO F, JIANG Q P, JIANG G Y, et al.. Prediction of visual discomfort of stereoscopic images based on saliency analysis[J]. Opt. Precision Eng., 2014, 22(6):1631-1638.(in Chinese)
HE R, YANG B, SANG N, et al.. Integral region-based covariance tracking with occlusion detection[J]. Multimedia Tools and Applications, 2015, 74(6):2157-2178.
PATRA B K, LAUNONEN R, OLLIKAINEN V, et al.. A new similarity measure using bhattacharyya coefficient for collaborative filtering in sparse data[J]. Knowledge-Based Systems, 2015, 82(2):163-177.
WU Y, LIM J, YANG M H. Online object tracking:a benchmark[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA:IEEE , 2013:2411-2418.
0
浏览量
406
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构