浏览全部资源
扫码关注微信
1.军械工程学院 火炮工程系, 河北 石家庄 050003
2.军械工程学院 车辆与电气工程系, 河北 石家庄 050003
丁超 (1990-), 男, 河北定兴人, 博士研究生, 2009年、2013年于军械工程学院分别获得学士、硕士学位, 现为军械工程学院火炮工程系博士研究生, 主要从事机器视觉及数字图像处理的研究。E-mail:duncan1119@163.com DING Chao, E-mail:duncan1119@163.com
[ "唐力伟 (1961-),男,北京人,教授,博士生导师,1984年、1990年、1996年于天津大学分别获得学士、硕士、博士学位,现为军械工程学院火炮工程系教授,主要从事机械性能检测与故障诊断、机器视觉等方面的研究。E-mail: tom5157@163.com" ]
收稿日期:2016-10-25,
录用日期:2017-1-5,
纸质出版日期:2017-04-25
移动端阅览
丁超, 唐力伟, 曹立军, 等. 基于结构光的身管膛线高度差检测[J]. 光学 精密工程, 2017,25(4):1077-1085.
Chao DING, Li-wei TANG, Li-jun CAO, et al. Height difference detection of barrel rifling based on structured light[J]. Optics and precision engineering, 2017, 25(4): 1077-1085.
丁超, 唐力伟, 曹立军, 等. 基于结构光的身管膛线高度差检测[J]. 光学 精密工程, 2017,25(4):1077-1085. DOI: 10.3788/OPE.20172504.1077.
Chao DING, Li-wei TANG, Li-jun CAO, et al. Height difference detection of barrel rifling based on structured light[J]. Optics and precision engineering, 2017, 25(4): 1077-1085. DOI: 10.3788/OPE.20172504.1077.
身管内膛表面几何特征参数的准确量化一直是身管疵病检测和寿命预测的一大难点,而身管膛线的高度差是其中最重要的几何参数之一。本文依托结构光三维检测手段,采用激光三角法对身管膛线高度差进行定量检测。首先将特定结构光栅投影到模拟身管内膛的标定圆筒内壁上,并采集经圆筒内表面散射后的变形结构光图像;然后利用图像边缘分割算法中的多个算子分别对标定圆筒内壁的结构光图像进行分割,同时引入灰度共生矩阵概念客观评价出最优的分割算子,对图像中结构光条的边缘分割进行优化;之后通过图像转换比例反推算法计算得到内壁图像高度差和实际凹槽高度差之间的转换关系,最终应用于身管膛线高度差的测量过程中。试验结果表明:绝对偏差控制在0.04 mm内,满足系统的精度要求,同时该方法检测手段方便、快捷。本文方法为精确量化身管内膛疵病的几何参数奠定了坚实基础。
In view of correct quantization of geometrical characteristic parameters on barrel's inner surface has always been one of difficult points for barrel defect detection and life forecast
and height difference of barrel rifling is one of the most important geometric parameters
this paper performed quantitative determination to height difference of barrel rifling by relying on the structured light three-dimensional detection means and adopting laser triangulation method. Firstly
certain structured raster was projected on inner wall of calibration cylinder of simulated barrel bore
and deformed structured light image scattering by internal surface of cylinder was collected. Secondly
structured light image on inner wall of calibration cylinder was segmented by utilizing numerous operators in image edge segmentation algorithm (IESA)
the gray-scale co-occurrence matrix concept was introduced simultaneously to evaluate optimal segmentation operator objectively and edge segmentation of structured light in image was optimized. Finally
image conversion ratio backward inference algorithm (ICRBIA) was used to derive transformation relation between height difference of inner wall image and that of actual groove. Height difference measurement experiment on actual barrel rifling indicates that the absolute deviation is controlled within 0.04 mm
which meets accuracy requirement of measurement system
and at the same time
the detection means of the method are convenient and fast. It can be conclusion that the proposed algorithm may lay solid foundation for precise quantization of geometrical parameter of barrel bore defect.
张振友, 杨岐子, 于政庆, 等.数字式高炮身管疵病探测仪的设计[J].兵工学报, 2015, 36(4):590-594.
ZHANG ZH Y, YANG Q Z, YU ZH Q, et al.. Research on digital detector for detecting the flaws of anti-aircraft artillery barrel[J]. ACTA ARMAMENTARⅡ, 2015, 36(4):590-594. (in Chinese)
曾朝阳, 赵继广.火炮身管疵病深度测量系统[J].光学 精密工程, 2010, 18(10):2221-2229.
ZENG ZH Y, ZHAO J G. Measuring system of flaw depth of gun barrel[J]. Opt. Precision Eng., 2010, 18(10):2221-2229. (in Chinese)
熊会元, 宗志坚, 陈承鹤.线结构光条纹中心的全分辨率精确提取[J].光学 精密工程, 2009, 17(5):1057-1062.
XIONG H Y, ZONG ZH J, CHEN CH H. Accurately extracting full resolution centers of structured light stripe[J]. Opt. Precision Eng., 2009, 17(5):1057-1062. (in Chinese)
张晓龙, 尹仕斌, 任永杰, 等.基于全局空间控制的高精度柔性视觉测量系统研究[J].红外与激光工程, 2015, 44(9):2805-2812.
ZHANG X L, YIN SH B, REN Y J, et al.. High-precision flexible visual measurement system based on global space control[J]. Infrared and Laser Engineering, 2015, 44(9):2805-2812. (in Chinese)
郑鹭斌, 王晓栋, 严菲.一种基于线结构光的焊缝三维重建方法[J].激光与光电子学进展, 2014(4):118-124.
ZHENG L B, WANG X D, YAN F. 3D reconstruction method based on linear-structured light stripe for welding seam[J]. Laser & Optoelectronics Progress, 2014(4):118-124. (in Chinese)
李伟, 沙爱民, 孙朝云, 等.基于线结构光的水泥混凝土路面错台三维检测[J].同济大学学报 (自然科学版), 2015, 43(7):1039-1044.
LI W, SHA A M, SUN Z Y, et al.. Joint faulting three-dimension detection method on cement concrete pavement with line-structure light[J]. Journal of Tongji University (Natural Science), 2015, 43(7):1039-1044. (in Chinese)
冷惠文, 徐春广, 肖定国, 等.基于线结构光的复杂深孔内轮廓三维测量方法[J].北京理工大学学报, 2013, 33(2):139-143.
LENG H W, XU CH G, XIAO D G, et al.. A method for measuring complicated deep-hole profile using line-structured-light sensor[J]. Transaction of Beijing Institute of Technology, 2013, 33(2):139-143. (in Chinese)
傅建平, 雷洁, 王建成, 等.火炮内膛全景图像窥测技术研究[J].弹道学报, 2012, 24(4):103-106.
FU J P, LEI J, WANG J CH, et al.. Research on gun-bore spying technology of panoramic image[J]. Journal of Ballistics, 2012, 24(4):103-106. (in Chinese)
WU J H, CHANG R S, JIANG J A. A novel pulse measurement system by using laser triangulation and a CMOS image sensor[J]. Sensors, 2007, 7(12):3366-3385.
SCHALK P, OFNER R, O' LEARY P. Pipe eccentricity measurement using laser triangulation[J]. Image and Vision Computing, 2007, 25(7):1194-1203.
张怀柱, 向长波, 宋建中, 等.改进的遗传算法在实时图像分割中的应用[J].光学 精密工程, 2008, 16(2):333-337.
ZHANG H ZH, XIANG CH B, SONG J ZH, et al.. Application of improved adaptive genetic algorithm to image segmentation in real time[J]. Opt. Precision Eng., 2008, 16(2):333-337. (in Chinese)
刘子伟, 许廷发, 王洪庆, 等.深度成像理论与实现[J].红外与激光工程, 2016, 45(7):0726001-1:5.
LIU Z W, XU T F, WANG H Q, et al.. Theory and implementation of depth photography[J]. Infrared and Laser Engineering, 2016, 45(7):0726001-1:5. (in Chinese)
巢渊, 戴敏, 陈恺, 等.基于广义反向粒子群与引力搜索混合算法的多阈值图像分割[J].光学 精密工程, 2015, 23(3):879-886.
CHAO Y, DAI M, CHEN K, et al.. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Opt. Precision Eng., 2015, 23(3):879-886. (in Chinese)
王昊鹏, 李慧.基于局部二值模式和灰度共生矩阵的籽棉杂质分类识别[J].农业工程学报, 2015, 31(3):236-241.
WANG H P, LI H. Classification recognition of impurities in seed cotton based on local binary pattern and gray level co-occurrence matrix[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3):236-241. (in Chinese)
0
浏览量
382
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构