浏览全部资源
扫码关注微信
1.沈阳大学 信息工程学院, 辽宁 沈阳 110044
2.中国科学院 沈阳自动化研究所 机器人学国家重点实验室, 沈阳 110016
杜英魁 (1980-), 男, 吉林临江人, 博士, 副教授, 2003年于吉林大学获得学士学位, 2006年于电子科技大学获得硕士学位, 2010年于中国科学院沈阳自动化研究所获得博士学位, 主要从事精密光学测量和智能物联技术的研究。E-mail:syu_dyk@163.com DU Ying-kui, E-mail:syu_dyk@163.com
[ "原忠虎 (1962-), 男, 辽宁庄河人, 教授, 博士生导师, 1984年、1997年于南开大学分别获得学士学位, 1989年、1997年于东北大学分别获得硕士、博士学位, 主要从事智能控制技术方面的研究。E-mail:syyzh62@163.com" ]
收稿日期:2016-11-15,
录用日期:2017-1-6,
纸质出版日期:2017-04-25
移动端阅览
杜英魁, 刘成, 田丹, 等. 弱纹理环境双目视觉稠密视差鲁棒估计方法[J]. 光学 精密工程, 2017,25(4):1086-1094.
Ying-kui DU, Cheng LIU, Dan TIAN, et al. Robust estimation method for dense disparity of binocular vision under textureless environment[J]. Optics and precision engineering, 2017, 25(4): 1086-1094.
杜英魁, 刘成, 田丹, 等. 弱纹理环境双目视觉稠密视差鲁棒估计方法[J]. 光学 精密工程, 2017,25(4):1086-1094. DOI: 10.3788/OPE.20172504.1086.
Ying-kui DU, Cheng LIU, Dan TIAN, et al. Robust estimation method for dense disparity of binocular vision under textureless environment[J]. Optics and precision engineering, 2017, 25(4): 1086-1094. DOI: 10.3788/OPE.20172504.1086.
精确稠密视差估计是立体视觉系统恢复观测场景三维信息的关键。从立体视觉在机器人环境感知的实际应用角度出发,提出了对于弱纹理、阴影和遮挡等关键影响因素,具有良好鲁棒性、精度和处理速度的稠密视差图估计算法。针对弱纹理、阴影和深度不连续的问题,设计了基于灰度相似度概率的置信度传播算法,结合视差平滑约束,以期实现较高精度的视差初值快速估计。由视差级数定义的消息向量通过异向平行迭代进行传播,消息向量包含表征像素点灰度相似性和平滑性的能量信息,通过全局能量函数的迭代收敛,快速获得视差初始估计。根据独立连通区域通常具有相似纹理特征和视差一致性的先验知识,提出了基于Mean-Shift聚类分割算法和参数空间投票自适应视差近似面估计算法,进行稠密视差的精细优化估计。利用具有不同弱纹理特征的5组标准测试图像、4组室内环境实际图像、4组室外环境实际图像和4组月面模拟特殊光照环境的实际环境图像进行了测试实验,实验结果表明了本文算法的良好鲁棒性和有效性。
Precise dense disparity estimation is the key for stereo visual system to recover three-dimensional information of observation scene. From practical application perspective of stereo vision in robot environment perception
a dense disparity figure estimation algorithm having good robustness
accuracy and processing speed to key influence factors (texturelessness
shadow and blocking etc.) was proposed. Aimed at texturelessness
shadow and uncontinuous
belief propagation algorithm based on gray-scale similarity probability had been designed to realize rapid and accurate estimation of initial value of disparity by combining with disparity smoothness constraint. The message vector defined by disparity class was propagated through anisotropic diffusion and parallel iteration. Message vector included energy information representing gray-scale similarity and smoothness of pixel point. Initial estimation of disparity could be gained rapidly through iteration convergence of global energy function. According to the priori knowledge that independent connected area generally had similar textural features and disparity conformance
parameter space voting self-adaption disparity approximation surface estimation algorithm on the basis of Mean-Shift clustering partitioning algorithm was proposed to perform fine optimization estimation of dense disparity. 5 groups of standard test image having different textureless features
4 groups of actual image under indoor environment
4 groups of actual image under outdoor environment and 4 groups of actual environment image under special lighting environment through selenographic simulation were utilized to perform test experiment and experimental result shows that the proposed algorithm has good robustness and effectiveness.
MOUATS T, AOUF N, SAPPA A D, et al.. Multispectral stereo odometry[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3):1210-1224.
MAIMONE M, CHENG Y, MATTHIES L. Two years of visual odometry on the mars exploration rovers[J]. Journal of Field Robotics, 2007, 24(3):169-186.
BERNINI N, BERTOZZI M, CASTANGIA L, et al.. Real-time obstacle detection using stereo vision for autonomous ground vehicles:A survey[C]. 17 th International IEEE Conference on Intelligent Transportation Systems , 2014:873-878.
PARK J, LEE J H, SON S H. A survey of obstacle detection using vision sensor for autonomous vehicles[C]. IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications , 2016:264-264.
SENGUPTA S, GREVESON E, SHAHROKNI A, et al.. Urban 3D semantic modelling using stereo vision[C]. IEEE International Conference on Robotics and Automation , 2013:580-585.
PEREZ J, SALES J, PENALVER A, et al.. Exploring 3-D reconstruction techniques:a benchmarking tool for underwater robotics[J]. IEEE Robotics & Automation Magazine, 2015, 22(3):85-95.
SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3):7-42.
SEITZ S M, CURLESS B, DIEBEL J, et al.. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 2006, 1:519-528.
李实秋, 雷建军, 周志远, 等.基于SIFT匹配的多视点立体图像零视差调整[J].红外与激光工程, 2015, 44(2):764-768.
LI SH Q, LEI J J, ZHOU ZH Y, et al.. Zero-disparity adjustment of multiview stereoscopic images based on SIFT matching[J]. Infrared and Laser Engineering, 2015, 44(2):746-768. (in Chinese)
http://vision.middlebury.edu/stereo http://vision.middlebury.edu/stereo [OL].
OHTA Y, KANADE T. Stereo by intra-and inter-scanline search using dynamic programming[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985 (2):139-154.
TARDON-GARCIA L J, PORTILLO-GARCIA J. Markov random fields and the disparity gradient constraint applied to stereo correspondence[C]. International Conference on Image Processing , 1999, 3:901-905.
ZHU J J, WANG L, GAO J Z. Spatial-temporal fusion for high accuracy depth maps using dynamic MRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 32(5):899-909.
BELHUMEUR P N. A Bayesian approach to binocular stereopsis[J]. International Journal of Computer Vision, 1999, 19(3):237-260.
BELHUMEUR P N, MUMFORD N. A Bayesian treatment of the stereo correspondence problem using half-occluded regions[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 1992:506-512.
BARNARD S T. Stochastic stereo matching over scale[J]. International Journal of Computer Vision, 1989, 3(1):17-32.
CHOU P B, BROWN C M. The theory and practice of Bayesian image labeling[J]. International Journal of Computer Vision, 1990, 4(3):185-210.
BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11):1222-1239.
BLEYER M, GELAUTZ M. Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions[J]. Signal Processing:Image Communication, 2007, 22(2):127-143.
TANIAI T, MATSUSHITA Y, NAEMURA T. Graph cut based continuous stereo matching using locally shared labels[C]. IEEE Conference on Computer Vision and Pattern Recognition , 2014:1613-1620.
SUN J, ZHENG N N, SHUM H Y. Stereo matching using belief propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7):787-800.
FELZENSZWALB P, HUTTENLOCHER D. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 2006, 70(1):41-54.
ESLAMI H, KASAMPALIS T, KOTSIFAKOU M. A GPU implementation of tiled belief propagation on Markov Random Fields[C]. IEEE/ACM International Conference on Formal Methods and Models for Codesign , 2013:143-146.
TIAN J D, TANG Y D. Linearity of each channel pixel values from a surface in and out of shadows and its applications[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 2011, 985-992.
DU Y, FAN B, HAN J, et al.. Binocular based moving target tracking for mobile robot[C]. International Conference on Intelligent Robotics and Applications , 2009:929-935.
COMANICIU D, MEER P. Mean shift:A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619.
樊世超, 贾阳, 向树红, 等.月面地形地貌环境模拟初步研究[J].航天器环境工程, 2007, 24(1):15-20.
FAN SH CH, JIA Y, XIANG SH H, et al.. A preliminary study on simulation of lunar surface terrain[J]. Spacecraft Environment Engineering, 2007, 24(1):15-20. (in Chinese)
0
浏览量
577
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构