浏览全部资源
扫码关注微信
1.南昌大学 机电工程学院, 江西 南昌 330031
2.赤峰学院 建筑与机械工程学院, 内蒙古 赤峰 024000
[ "王晓辉 (1979-) 女, 内蒙古赤峰人, 博士研究生, 副教授, 2004年于合肥工业大学获得学士学位, 2008年于广东工业大学获得硕士学位, 现为南昌大学机电工程学院博士研究生, 主要从事逆向工程与三维光学图像处理技术研究。E-Mail:babywxh@126.com" ]
吴禄慎 (1953-), 男, 江西乐平人, 硕士, 教授, 博士生导师, 1990年于清华大学获得硕士学位, 主要从事数字化与可视化技术、三维光学图像测量与逆向工程的研究。E-mail:wulushen@163.com WU Lu-shen, E-mail:wulushen@163.com
收稿日期:2016-11-16,
录用日期:2017-1-16,
纸质出版日期:2017-04-25
移动端阅览
王晓辉, 吴禄慎, 陈华伟, 等. 应用改进的粒子群优化模糊聚类实现点云数据的区域分割[J]. 光学 精密工程, 2017,25(4):1095-1105.
Xiao-hui WANG, Lu-shen WU, Hua-wei CHEN, et al. Region segmentation of point cloud data based on improved particle swarm optimization fuzzy clustering[J]. Optics and precision engineering, 2017, 25(4): 1095-1105.
王晓辉, 吴禄慎, 陈华伟, 等. 应用改进的粒子群优化模糊聚类实现点云数据的区域分割[J]. 光学 精密工程, 2017,25(4):1095-1105. DOI: 10.3788/OPE.20172504.1095.
Xiao-hui WANG, Lu-shen WU, Hua-wei CHEN, et al. Region segmentation of point cloud data based on improved particle swarm optimization fuzzy clustering[J]. Optics and precision engineering, 2017, 25(4): 1095-1105. DOI: 10.3788/OPE.20172504.1095.
为实现点云数据的区域划分,提出一种基于改进的粒子群优化与模糊C-均值聚类的混合算法(SPSO-FCM算法)。针对在点云聚类过程中易过早捕获局部极小值的问题,算法首先用改进的粒子群算法——社会粒子群优化算法,对种群进行初始化,通过为每一个粒子设置不同的跟随阈值,来维护种群中个体多样性,加深对种群全局搜索的程度,避免陷入局部极小值;随后,设置种群中每个粒子当前最优位置和初始种群的最优位置,更新自由粒子的位置和跟随粒子的速度和位置;最后,采用模糊C-均值聚类算法求解隶属度矩阵,确定适应值函数,更新所有粒子的最优位置,并判断粒子和种群的位置优越性,得到准确的聚类中心,实现对点云数据的区域划分。以曲面复杂度不一致的点云模型为例对算法进行验证,探讨SPSO-FCM聚类算法的可行性,并与FCM聚类算法、遗传FCM聚类算法进行比对。实验结果显示,SPSO-FCM聚类算法较其它两种算法,收敛速度快,迭代次数少,聚类准确,边界区域分割清晰,特别是对型面复杂、点云数据较多的机械零部件点云数据进行分割时,能得到更好的分割结果。
To realize region segmentation of point cloud data
a kind of mixed algorithm (SPSO-FCM algorithm) based on improved particle swarm optimization and fuzzy-C means clustering was introduced. Aimed at local minimum easily to be captured untimely in point cloud clustering process
improved particle swarm optimization algorithm-social particle swarm optimization algorithm was used firstly to initialize population in the algorithm. By setting different follow thresholds for each particle
variety of individual in population was maintained and the global search degree of population was enhanced to avoid falling into the local minimum. Then the current optimal position of each particle in population and optimal position of initial population were set to update position of free particle and speed and position of following particle. Finally
fuzzy C-means clustering algorithm was adopted to solve membership matrix and determine fitness function. On the basis of above
optimal position of all particles were updated and position superiority of particle and population were judged to gain correct clustering center and to realize region segmentation of point cloud data. Took point cloud model with inconsistent surface complexity as example to verify algorithm and discuss feasibility of SPSO-FCM clustering algorithm and compare with FCM clustering algorithm and genetic FCM clustering algorithm. Experimental result shows that compared with other 2 algorithms
SPSO-FCM clustering algorithm has quicker convergence rate and less iteration with more correct clustering and clearer boundary region segmentation
and especially for point cloud data segmentation of mechanical components and parts with complex molded surface and numerous point cloud data
it can get better segmentation result.
BIOSCA J M, LERMA J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1):84-98.
THONG P H, SON L H. A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality[J]. Knowledge-Based Systems, 2016, 109:48-60.
NAYAK J, NAIK B, KANUNGO D P, et al.. A hybrid elicit teaching learning based optimization with fuzzy c-means (ETLBO-FCM) algorithm for data clustering[J]. Ain Shams Engineering Journal:2016, DOI:http://doi.org/10.1016/J.asej.2016.01.010.
MEKHMOUKH A, MOKRANI K. Improved fuzzy C-Means based Particle Swarm Optimization (PSO) initialization and outlier rejection with level set methods for MR brain image segmentation[J]. Computer Methods and Programs in Biomedicine, 2015, 122(2):266-281.
胡文庆, 施昆, 曹影.模糊C-均值聚类对点云数据的分割[J].安徽农业科学, 2015, 43(17):353-356.
HU W Q, SHI K, CAO Y. Segmentation of point cloud data with fuzzy c-means clustering[J]. Journal of Anhui Agri. Sci., 2015, 43(17):353-356. (in Chinese)
刘雪梅, 张树生, 洪歧, 等.逆向工程中基于模糊聚类的点云数据分区[J].机械科学与技术, 2007, 26(4):515-517+520.
LIU X M, ZHANG SH SH, HONG Q, et al.. Point cloud data segmentation based on fuzzy c-means clustering algorithm in reverse engineering[J]. Mechanical Science and Technology, 2007, 26(4):515-517+520. (in Chinese)
吴禄慎, 俞涛, 陈华伟.基于自适应椭圆距离的点云分区精简算法[J].计算机应用与软件, 2016(2):42-45.
WU L SH, YU T, CHEN H W. Reduction algorithm of point cloud segmentation based on adaptive elliptical distance[J]. Computer Applications and Software, 2016(2):42-45. (in Chinese)
柯映林, 陈曦.点云数据的几何属性分析及区域分割[J].机械工程学报, 2006, 42(8):7-15.
KE Y L, CHEN X. Geometric attribute analysis and segmentation of point cloud[J]. Chinese Journal of Mechanical Engineering, 2006, 42(8):7-15. (in Chinese)
赵东, 赵宏伟, 于繁华.动态多目标优化的运动物体图像分割[J].光学 精密工程, 2015, 23(7):2109-2116.
ZHAO D, ZHAO H W, YU F H.Moving object image segmentation by dynamic multi-objective optimization[J]. Opt. Precision Eng., 2015, 23(7):2109-2116. (in Chinese)
魏一, 刘彦呈, 陈洋.利用SOM神经网络实现逆向工程中区域自动分割[J].大连海事大学学报, 2009, 35(4):108-112.
WEI Y, LIU Y CH, CHEN Y.Improved SOM networks for segmentation in reverse engineering[J]. Journal of Dalian Maritime University, 2009, 35(4):108-112. (in Chinese)
周鹏飞. 基于改进的模糊BP神经网络的图像分割方法研究[D]. 太原: 太原理工大学, 2014.
ZHOU P F.The research on image segmentation based on improved BP fuzzy neural network[D]. Taiyuan:Taiyuan University of Technology, 2014. (in Chinese)
李海伦, 黎荣, 丁国富, 等.应用遗传模糊聚类实现点云数据区域分割[J].计算机应用研究, 2012, 29(5):1974-1976.
LI H L, LI R, DING G F, et al..Genetic fuzzy clustering algorithm for point cloud data segmentation[J]. Application Research of Computers, 2012, 29(5):1974-1976. (in Chinese)
崔竹冬. 基于谱聚类的三维血管点云分割技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
CUI ZH D. Study of segmentation algorithm for three-dimentional point cloud data of blood vessels based on spectral graph [D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese)
巢渊, 戴敏, 陈恺, 等.基于广义反向粒子群与引力搜索混合算法的多阈值图像分割[J].光学 精密工程, 2015, 23(3):879-886.
CHAO Y, DAI M, CHEN K, et al.. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Opt. Precision Eng., 2015, 23(3):879-886. (in Chinese)
SILVA FILHO T M, PIMENTEL B A, SOUZA R M C R, et al.. Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization[J].Expert Systems with Applications, 2015, 42(17-18):6315-6328.
BENAICHOUCHE A N, OULHADJ H, SIARRY P. Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction[J].Digital Signal Processing, 2013, 23(5):1390-1400.
KENNEDY J, EBERHART R C, SHI Y. Swarm Intelligence[M]. San Francisco:Morgan Kaufman Publisher, 2001.
梁毅. 粒子群算法搜索模式研究与应用[D]. 上海: 华东理工大学, 2011.
LIANG Y. Search pattern analysis and application of the particle swarm optimization [D]. Shanghai:East China University of Science and Technology, 2011. (in Chinese)
KENNEDY J, EBERHART R C. Particle Swarm Optimization[C]. Proceedings of the IEEE International Conference on Neural Networks, Piscataway, New Jersey , 1995:1942-1948.4.
SUGANTHAN P N. Particle swarm optimizer with neighborhood operator[C]. Proceedings of the IEEE International Congress, Evolutionary Computation , 1999, 3:1958-1962.
SHI Y, EBERHART R C. A modified particle swarm optimizer[C]. Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence , 1998, (69-73).
SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, New Jersey:IEEE Service Center , 1999:1945-1950.
PAL N R, BEZDEK J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3):370-379.
吴禄慎, 史皓良, 陈华伟.基于特征信息分类的三维点数据去噪[J].光学 精密工程, 2016, 24(6):1465-1473.
WU L SH, SHI H L, CHEN H W. Denoising of three-dimensional point data based on classification of feature information[J]. Opt. Precision Eng., 2016, 24(6):1465-1473. (in Chinese)
0
浏览量
457
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构