浏览全部资源
扫码关注微信
1.南京邮电大学 光电工程学院, 江苏 南京 210023
2.南京理工大学 电子工程与光电技术学院, 江苏 南京 210094
[ "费彬 (1991-), 男, 江苏无锡人, 硕士, 2013年、2016年于南京邮电大学分别获得光学工程学士、硕士学位, 现为中国电信股份有限公司无锡分公司技术支撑工程师, 硕士期间主要从事X射线成像及图像分析研究。E-mail:fbincyk@163.com" ]
喻春雨 (1976-), 女, 辽宁沈阳人, 博士, 副教授, 2006年于南京理工大学获得光学工程博士学位, 2006-2008年在北京大学信息科学技术学院从事博士后研究工作, 2014-2015年在宾夕法尼亚大学医学院做访问学者, 主要从事X射线成像新方法及图像处理研究。E-mail:yucy@njupt.edu.cn YU Chun-yu, E-mail:yucy@njupt.edu.cn
收稿日期:2016-11-04,
录用日期:2016-12-12,
纸质出版日期:2017-04-25
移动端阅览
费彬, 孙京阳, 张俊举, 等. 基于稀疏处理的多能X射线分离成像[J]. 光学 精密工程, 2017,25(4):1106-1111.
Bin FEI, Jing-yang SUN, Jun-ju ZHANG, et al. Separation of multi-energy X-ray imaging based on sparse processing[J]. Optics and precision engineering, 2017, 25(4): 1106-1111.
费彬, 孙京阳, 张俊举, 等. 基于稀疏处理的多能X射线分离成像[J]. 光学 精密工程, 2017,25(4):1106-1111. DOI: 10.3788/OPE.20172504.1106.
Bin FEI, Jing-yang SUN, Jun-ju ZHANG, et al. Separation of multi-energy X-ray imaging based on sparse processing[J]. Optics and precision engineering, 2017, 25(4): 1106-1111. DOI: 10.3788/OPE.20172504.1106.
利用独立成分分析(Independent Component Analysis,ICA)并结合多能X射线图像的丰富信息可以将二维X射线图像中重叠目标分离成像,但是海量的图像数量,以及高像素数的要求均会使内存占有量和计算速度面临挑战,因此本研究将压缩感知(Compressed Sensing,CS)与ICA相结合进行分离成像,以提高计算速度和分离成像性能。研究过程中,首先根据被拍摄物体的物质组成确定拍摄多能X射线图像数量,并选取CS技术中K均值奇异值分解(K-means SingularValue Decomposition,K-SVD)稀疏基将多能X射线图像进行稀疏表示,然后利用ICA将此稀疏表示进行盲源分离得到独立源,最后采用正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)将独立源进行重构实现分离成像。研究结果表明:采用ICA & CS技术比仅采用ICA进行目标分离成像的运行时间减少了46.14 s(23.3%)、内存占有率降低了21%、重构图像峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高了2.665 dB、边缘梯度提高了0.001、信息熵提高了0.09。
Independent Component Analysis (ICA) combined with abundant information of multi-energy X-ray images can achieve the imaging separation of overlapping targets in 2D X-ray images
but the increasing number of images and higher pixel requirements may serve as an obstacle for memory occupancy and calculating speed. In this paper
Compressed Sensing (CS) was combined with ICA to achieve the imaging separation and to improve the calculating speed
as well as the imaging separation performance. First
the number of the multi-energy X-ray images was determined based on composition of the captured object
and then sparse representation of multi-energy X-ray images was carried out by selecting K-means Singular Value Decomposition (K-SVD) in the CS technology; then
Blind Source Separation (BSS) was conducted in such sparse representation to obtain the independent source by using ICA; finally
Orthogonal Matching Pursuit (OMP) was used to reconstruct the independent source
thus achieving the imaging separation. The results show that compared with the algorithm merely based on ICA
ICA & CS could reduce the algorithm running time by 46.14 s (23.3%) and memory occupancy by 21%
and improve the Peak Signal to Noise Ratio (PSNR) of the reconstructed image by 2.665 dB
edge gradient by 0.001 and information entropy by 0.09.
MCCOLLOUGH CH, LENG SA, YU L F, et al.. Dual-and multi-energy CT:principles, technical approaches, and clinical applications[J]. Radiology, 2015, 276(3):637-653.
RICHARD K J, RICHARD A K. Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing[J]. Ore Geology Reviews, 2015, 65(SI):821-839.
STUTMAN D, TRITZ K, FINKENTHAL M. Multi-energy x-ray imaging and sensing for diagnostic and control of the burning plasma[J]. Review of Scientific Instruments, 2012, 83(10):10E535.
SAIM A, TEBBOUNE A, BERKOK H, et al.. Linear and mass attenuation coefficient for CdTe compound of X-rays from 10 to 100 keV energy range in different phases[J]. Journal of Alloys and Compounds, 2014, 602:261-264.
MIDGLEY SM. A model for multi-energy x-ray analysis[J]. Physics in Medicine and Biology, 2011, 56(10):2943-2962.
FIRSCHING M, NACHTRAB F, UHLMANN N, et al.. Multi-energy X-ray imaging as a quantitative method for materials characterization[J]. Advanced Materials, 2011, 23(22-23):2655-2656.
李艳, 喻春雨, 缪亚健, 等.基于ICA的X射线医学图像目标提取[J].光谱学与光谱分析, 2015, 35(3):825-828.
LI Y, YU CH Y, MIAO Y J, et al.. Object separation from medical x-ray images based on ICA[J]. Spectroscopy and Spectral Analysis, 2015, 35(3), 825-828. (in Chinese)
HYVARINEN A. Independent component analysis:Recent advances[J]. Philosophical Transactions of the Royal Society A, 2013, 371(1984):20110534.
陈媛媛, 王芳, 王志斌, 等.独立成分分析在化学战剂混叠峰识别中的应用[J].红外与激光工程, 2016, 45(4):0423001.
CHEN Y Y, WANG F, WANG ZH B, et al.. Application of independent component analysis in aliasing peak identification of chemical warfare agents[J]. Infrared and Laser Engineering, 2016, 45(4):0423001.(in Chinese)
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
酉霞, 陈菲, 贾小林, 等.字典学习中字典尺度对DICOM图像压缩的影响[J].液晶与显示, 2015, 30(6):1045-1050.
YOU X, CHEN F, JIA X L, et al.. Effects of dictionary scale on dictionary learning for DICOM image compression[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(6):1045-1050. (in Chinese)
周渝人, 耿爱辉, 张强.基于压缩感知的红外与可见光图像融合[J].光学 精密工程, 2015, 23(3):855-863.
ZHOU Y R, GENG A H, ZHANG Q, et al.. Fusion of infrared and visible images based on compressive sensing[J]. Opt. Precision Eng., 2015, 23(3):855-863. (in Chinese)
WU Z Y, ZHANG W, WANG J W, et al.. Feature extraction for gas photoacoustic spectroscopy and content inverse based on overcomplete ICA bases[J]. Optics and Laser Technology, 2013, 48:580-588.
PENG H Y, ZHU S M. Handling of incomplete data sets using ICA and SOM in data mining[J]. Neural Computing & Applications, 2007, 16(2):167-172.
EMMANUEL C J, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
RABAH H, AMIRA A, MOHANTY B K, et al.. FPGA implementation of orthogonal matching pursuit for compressive sensing reconstruction[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(10):2209-2220.
PTUCHA R, SAVAKIS A E. LGE-KSVD:Robust sparse representation classification[J]. IEEE Transactions on Image Processing, 2014, 23(4):1737-1750.
0
浏览量
382
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构