浏览全部资源
扫码关注微信
1.北京理工大学 光电学院 光电成像技术与系统教育部重点实验室, 北京 100081
2.中国空间技术研究院 北京空间飞行器总体设计部, 北京 100094
[ "李少辉(1974-), 女, 黑龙江哈尔滨人, 博士研究生, 高级工程师, 2002年于北京理工大学获得硕士学位, 中国空间技术研究院北京空间飞行器总体设计部遥感中心系统研发室主任, 主要从事卫星有效载荷总体设计方面的研究。E-mail:30085543@qq.com" ]
陈小梅(1976-), 女, 浙江宁波人, 博士, 副教授, 2008年于北京理工大学获得博士学位, 主要从事光电成像技术、卫星有效载荷仿真方面的研究。E-mail:cxiaomei@bit.edu.cn CHEN Xiao-mei, E-mail:regnier@ibpc.fr
收稿日期:2016-11-22,
录用日期:2017-1-6,
纸质出版日期:2017-05-25
移动端阅览
李少辉, 陈小梅. 高精度卫星激光通信地面验证系统[J]. 光学 精密工程, 2017,25(5):1149-1158.
Shao-hui LI, Xiao-mei CHEN. Highly precise ground certification system of satellite laser communication[J]. Optics and precision engineering, 2017, 25(5): 1149-1158.
李少辉, 陈小梅. 高精度卫星激光通信地面验证系统[J]. 光学 精密工程, 2017,25(5):1149-1158. DOI: 10.3788/OPE.20172505.1149.
Shao-hui LI, Xiao-mei CHEN. Highly precise ground certification system of satellite laser communication[J]. Optics and precision engineering, 2017, 25(5): 1149-1158. DOI: 10.3788/OPE.20172505.1149.
为了在地面高精度评估激光通信终端对卫星平台扰动以及轨道姿态变化的适应能力,研究了卫星扰动模拟技术和卫星随动仿真模拟技术,据此提出了激光通信系统地面验证方案。首先开展了激光通信链路随动探测误差对系统随动性能影响分析、卫星扰振源特性分析及建模工作。其次,分析了卫星扰动模拟和随动模拟的关键技术及解决措施。最后,结合目前卫星激光通信及卫星平台技术水平,利用典型数据开展了扰动和随动仿真,完成了激光通信系统测试。实验结果证明:基于双反馈环路的高精度光束瞄准控制能够大幅提高卫星扰动模拟器光束瞄准的控制精度,光束控制精度优于0.1";采用高低频联合卫星扰动模拟设计方法,实现了控制带宽优于1 kHz的高精度光束控制;高精度随动系统在全卫星运行区域内对卫星光通信终端随动性能的检测精度可达0.1"。
To realize the high-accuracy evaluation of adaptive capacity of laser communication terminal to satellite platform disturbance and orbit attitude changes on the ground
the satellite disturbance simulation technique and satellite following analogue simulation technique were researched
from which the ground verification scheme for laser communication system was proposed. Firstly
the effect of laser communication link following detection error on system following performance
as well as the feature of satellite disturbance vibration source was analyzed. Then the model of the vibration source was constructed. The key technology on satellite disturbance simulation and following simulation and countermeasure were analyzed. Finally
combining with current satellite laser communication and satellite platform technology level
the disturbance and following simulation was developed and the laser communication system test was finished via typical data. Experimental result verifies that high-accuracy beam pointing control based on double feedback loop can improve the control accuracy of beam pointing of satellite disturbance simulator greatly
and the beam control accuracy is superior to 0.1″. With the high-frequency and low-frequency joint satellite disturbance simulation method
the high-accuracy beam control of which control bandwidth superior to 1 kHz is realized. Moreover
the detection accuracy of high-accuracy following system to following performance of satellite photo-communication terminal within satellite operating range reaches to 0.1″.
SODNIK Z, SMIT H, SANS M.LLCD operations using the lunar lasercom OGS terminal[J]. SPIE , 2014, 8971:89710W.
YU S Y, BAO F D, WU F, et al .. Research on adaptive compensation techniques in laser communication links[C]. Proceedings of the Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). IEEE , 2015:43-47.
NEUMANN G A, CAVANAUGH J F, COYLE D B, et al .. Laser ranging at interplanetary distances[C]. Proceedings of the 15th International Workshop on Laser Ranging , 2006:451-456.
BISWAS A, KOVALIK J, WRIGHT M W. LLCD operations using the Optical Communications Telescope Laboratory(OCTL)[J]. SPIE , 2014, 8971:89710X.
YU S Y, MA Z T, MA J, et al .. Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links[J]. Optics Express , 2015, 23(6):7263-7272.
BOROSON D M, ROBINSON B S. Status of the lunar laser communication demonstration[J]. SPIE , 2013, 8610:861002.
BOROSON D M, ROBINSON B S, BURIANEK D A, et al .. Overview and status of the lunar laser communications demonstration[J]. SPIE , 2012, 8246:82460C.
BOROSON D M, SCOZZAFAVA J J, MURPHY D V, et al .. The lunar laser communications demonstration(LLCD)[C]. Proceeding of the IEEE International Conference on Space Mission Challenges for Information Technology , 2009:23-28.
SODNIK Z, LUTZ H, FURCH B, et al .. Optical satellite communications in Europe[J]. SPIE , 2010, 7587:758705.
TOLKER-NIELSEN T. Pointing, acquisition and tracking system for the free-space laser communication system, SILEX[J]. SPIE , 1995, 2381:194-205.
HEINE F, KAMPFNER H, CZICHY R, et al .. Optical inter-satellite communication operational[C]. Proceeding of MILCOM 2010 Military Communication Conference, IEEE , 2010:1583-1587.
TOLKER-NIELSEN T, OPPENHAUSER G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. SPIE , 2002, 4635:1-15.
YU S Y, MA Z T, MA J, et al .. Research on the far-field characterization of bidirectional beam stabilized tracking in inter-satellites optical communication links[J]. Advanced Solid State Lasers , 2014, doi:10.1364/ASSL.2014.ATh2A.55.
TAKASHI J, YOSHIHISA T, NOBUHIRE K, et al .. OICETS on-orbit laser communication experiments[J]. SPIE , 2006, 6105:610503.
TOYOSHIMA M, TAKAYAMA Y, KUNIMORI H, et al .. In-orbit measurements of spacecraft microvibrations for satellite laser communication links[J]. Optical Engineering . 2010, 49(8):083604.
邢强林, 李舰艇, 唐嘉, 等.激光载波统一系统方案构想[J].飞行器测控学报, 2009, 28(2):36-44.
XING Q L, LI J T, TANG J, et al .. Conception of a unified laser TT & C system[J]. Journal of Spacecraft TT&C Technology , 2009, 28(2):36-44.(in Chinese)
YU S Y, WU F, TAN L Y, et al ..Research on the standards of indicators associated with maintain time in bidirectional beam tracking in inter-satellites optical communication links[J]. Optics Express , 2015, 23(21):27618-27626.
钱卫平.航天测控通信新体制研究[J].载人航天, 2009, 15(1):1-8.
QIAN W P. The research of a novel aerospace TT & C system[J]. Manned Spaceflight , 2009, 15(1):1-8.(in Chinese)
0
浏览量
719
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构