浏览全部资源
扫码关注微信
1.长春工业大学 机电工程学院, 吉林 长春 130012
2.吉林大学 机械科学与工程学院, 吉林 长春 130025
3.哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150080
4.日本琦玉工业大学 工学部机械工学科, 深谷市 3690293
程廷海(1983-), 男, 黑龙江牡丹江人, 博士, 副教授, 硕士研究生导师, 2013年于哈尔滨工业大学获得博士学位, 主要从事环境振动能量俘获与自供能技术和压电驱动技术研究。E-mail:chengtinghai@163.com CHENG Ting-hai, E-mail:chengtinghai@163.com
[ "刘文博(1991-), 男, 河北承德人, 硕士研究生, 主要从事环境能量俘获与自供能技术的研究。E-mail:wenboliu_lsss@163.com" ]
收稿日期:2016-09-18,
录用日期:2016-11-16,
纸质出版日期:2017-05-25
移动端阅览
程廷海, 刘文博, 赵宏伟, 等. 气动高压激励的阵列式盘型压电俘能器[J]. 光学 精密工程, 2017,25(5):1222-1228.
Ting-hai CHENG, Wen-bo LIU, Hong-wei ZHAO, et al. Array piezoelectric plate harvester excited by pneumatic compressed air[J]. Optics and precision engineering, 2017, 25(5): 1222-1228.
程廷海, 刘文博, 赵宏伟, 等. 气动高压激励的阵列式盘型压电俘能器[J]. 光学 精密工程, 2017,25(5):1222-1228. DOI: 10.3788/OPE.20172505.1222.
Ting-hai CHENG, Wen-bo LIU, Hong-wei ZHAO, et al. Array piezoelectric plate harvester excited by pneumatic compressed air[J]. Optics and precision engineering, 2017, 25(5): 1222-1228. DOI: 10.3788/OPE.20172505.1222.
提出了利用气动高压激励的阵列式盘型压电俘能器实现气体能量的转化,以满足低功耗传感器的自供能需求。通过压电单晶片将气缸内部高压气体能量转化为电能,设计了阵列式盘型压电俘能器的样机结构;结合气缸的正常工作状态,分析了压电阵列的工作原理并进行了相应的实验。理论分析显示:盘型压电阵列具有较高的电荷量与良好的电容性,适合对具有交变载荷的高压气体能量进行收集。采用外径为12 mm、厚度为0.2 mm的压电单晶片及缸径为63 mm、行程为150 mm的气缸制作了实验样机,利用气动组件模拟气体环境搭建了测试系统。分别调节压力、周期、流量等参数进行了实验测试。结果表明:在交变的气动高压激励下,阵列式盘型压电俘能器可较好地收集交变高压气体载荷能量,其最佳匹配电阻为600 kΩ,最大的瞬时功率为1 052
μ
W,输出功率可满足低功耗传感器的能量需求。
An array piezoelectric plate harvester excited by pneumatic compressed air was proposed to implement gas energy conversion and to satisfy the demand of energy supplying for low-power wireless sensors. By converting the alternate high air pressure energy in a pneumatic system into the electric energy with piezoelectric plates
the structure of a prototype for the array piezoelectric plate harvester system was designed. Then
based on the normal working states of the presented harvester
its working principles were introduced and corresponding experiments were performed. The theoretical analysis results show that the array piezoelectric plate has high output voltage capacities and collects the compressed gas energy effectively. An experimental prototype was fabricated by combing a piezoelectric single chip with a diameter of 12 mm and a thickness of 0.2 mm and an air cylinder with a diameter of 63 mm and a travel of 150 mm. A test system was built to research the performance of array piezoelectric plate harvester in simulated gas conditions. In the test
the pressures
cycles and flows were adjusted
respectively. Experimental results at the alternate high air excitation show that the proposed harvester collects the load gas energy of alternate high pressure air
and its optimal load resistance is 600 kΩ and instantaneous power is 1 052
μ
W
which meets the demands of low power sensors for energy applying.
陈启复.对我国气动工业现状与未来发展的思考——气动行业"十二五"发展规划建议[J].液压气动与密封, 2012, 32(1):16-22.
CHEN Q F. Thinking about the present and Future development of China pneumatic industry:suggestions to the 12th five-year development plan for pneumatic field[J]. Hydraulics Pneumatics & Seals , 2012, 32(1):16-22. (in Chinese)
李征, 万杰, 阚君武, 等.基于流固耦合作用的压电液压振动俘能器[J].光学 精密工程, 2012, 20(5):1002-1008.
LI ZH, WAN J, KAN J W, et al .. Piezo-hydraulic energy harvester based on solid-fluid coupling vibration[J] Opt. Precision Eng ., 2012, 20(5):1002-1008. (in Chinese)
郝鹏飞, 孙喜明, 何枫.气动技术中无线技术应用[J].液压与气动, 2014(11):1-5.
HAO P F, SUN X M, HE F. Analysis of wireless technology for pneumatic technology application[J]. Chinese Hydraulics & Pneumatics , 2014(11):1-5. (in Chinese)
王淑云, 张肖逸, 阚君武, 等.气体耦合式宽带/低频压电振动俘能器[J].光学 精密工程, 2015, 23(2):497-503.
WANG S Y, ZHANG X Y, KAN J W, et al .. Wideband/low frequency piezoelectric vibration energy harvester based on pneumato-coupling[J] Opt. Precision Eng ., 2015, 23(2):497-503. (in Chinese)
KUCHLE J J, LOVE N D. Self-powered wireless thermoelectric sensors[J]. Measurement , 2014, 47:26-32.
SHAIKH F K, ZEADALLY S. Energy Harvesting in wireless sensor networks:A comprehensive review[J]. Renewable and Sustainable Energy Reviews , 2016, 55:1041-1054.
TOPRAK A, TIGLI O. Piezoelectric energy harvesting:state-of-the-art and challenges[J]. Applied Physics Reviews , 2014, 1(3):031104.
KISHORE R A, VUČKOVIC Ć D, PRIYA S. Ultra-low wind speed piezoelectric windmill[J]. Ferroelectrics , 2014, 460(1):98-107.
YANG Y, SHEN Q L, JIN J M, et al .. Rotational piezoelectric wind energy harvesting using impact-induced resonance[J]. Applied Physics Letters , 2014, 105(5):053901.
刘祥建, 朱莉娅, 陈仁文.两自由度悬臂梁压电发电装置的宽频发电性能[J].光学 精密工程, 2016, 24(7):1669-1676.
LIU X J, ZHU L Y, CHEN R W. Broadband generation performance of two-degree-of-freedom cantilever beam piezoelectric generator[J]. Opt. Precision Eng ., 2016, 24(7):1669-1676. (in Chinese)
阚君武, 张肖逸, 王淑云, 等.直激式压电风能捕获器的性能分析与实验[J].光学 精密工程, 2016, 24(5):1087-1092.
KAN J W, ZHANG X Y, WANG S Y, et al .. Performance analysis and test of blowing-type PZT wind energy harvester[J]. Opt. Precision Eng ., 2016, 24(5):1087-1092. (in Chinese)
刘颖, 王艳芬, 李刚, 等. MEMS低频压电振动能量采集器[J].光学 精密工程, 2014, 22(9):2476-2482.
LIU Y, WANG Y F, LI G, et al .. MEMS-based low-frequency piezoelectric vibration energy harvester[J]. Opt. Precision Eng ., 2014, 22(9):2476-2482. (in Chinese)
刘祥建, 陈仁文, 侯志伟.蒲公英状压电振动能量收集装置宽频带设计[J].光学 精密工程, 2014, 22(7):1850-1856.
LIU X J, CHEN R W, HOU ZH W. Wide-band design of dandelion-shape piezoelectric vibration energy harvester[J]. Opt. Precision Eng ., 2014, 22(7):1850-1856. (in Chinese)
PRIYA S. Modeling of electric energy harvesting using piezoelectric windmill[J]. Applied Physics letters , 2005, 87(18):184101.
AKAYDIN H D, ELVIN N, ANDREOPOULOS Y. Energy harvesting from highly unsteady fluid flows using piezoelectric materials[J]. Journal of Intelligent Material Systems and Structures , 2010, 21(13):1263-1278.
KIM S, CLARK W W, WANG Q M. Piezoelectric energy harvesting with a clamped circular plate:analysis[J]. Journal of Intelligent Material Systems and Structures , 2005, 16(10):847-854.
KIM S, CLARK W W, WANG Q M. Piezoelectric energy harvesting with a clamped circular plate:experimental study[J]. Journal of Intelligent Material Systems and Structures , 2005, 16(10):855-863.
WANG Y T, WANG L, CHENG T H, et al .. Sealed piezoelectric energy harvester driven by hyperbaric air load[J]. Applied Physics Letters , 2016, 108(3):033902.
CHENGT H, WANG Y T, QIN F, et al .. Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure[J]. Applied Physics Letters , 2016, 109(7):073902.
0
浏览量
341
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构