浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
3.长光卫星技术有限公司, 吉林 长春 130000
[ "姜悦宁 (1989-), 女, 吉林长春人, 博士研究生, 2012年于西北工业大学获得学士学位, 主要从事飞行器气动外形设计与气动特性分析的研究。E-mail:atpynjiang@163.com" ]
贾宏光 (1971-), 男, 黑龙江五常人, 研究员, 博士生导师, 1994年于哈尔滨工业大学获得学士学位, 1997年于长春理工大学获得硕士学位, 2000年于中科院长春光学精密机械与物理研究所获得博士学位, 主要从事飞行器总体技术研究。E-mail:jiahg@ciomp.ac.cn JIA Hong-guang, E-mail:jiahg@ciomp.ac.cn
收稿日期:2016-06-23,
录用日期:2016-8-1,
纸质出版日期:2017-05-25
移动端阅览
姜悦宁, 贾宏光. 基于目标环量分布的机翼减阻反向设计[J]. 光学 精密工程, 2017,25(5):1259-1265.
Yue-ning JIANG, Hong-guang JIA. Drag-reduction inverse design of wings based on lifting-line theory[J]. Optics and precision engineering, 2017, 25(5): 1259-1265.
姜悦宁, 贾宏光. 基于目标环量分布的机翼减阻反向设计[J]. 光学 精密工程, 2017,25(5):1259-1265. DOI: 10.3788/OPE.20172505.1259.
Yue-ning JIANG, Hong-guang JIA. Drag-reduction inverse design of wings based on lifting-line theory[J]. Optics and precision engineering, 2017, 25(5): 1259-1265. DOI: 10.3788/OPE.20172505.1259.
为了优化直升机升阻比,研究了飞机设计过程中减小诱导阻力的措施,提出了一种机翼几何扭转角的反向设计方法。该方法通过确定目标升力分布形式,对沿翼展方向选取的设计点进行几何扭转角设计,实现目标分布。基于升力线理论,建立用傅里叶正弦级数表示的升力线理论积分微分方程的矩阵表示形式,编制了低速平直机翼的气动力、气动载荷分布的计算程序和几何扭转角的反向设计程序。最后,基于目标环量分布获得了几何扭转机翼,并通过程序预测和数值模拟方法对优化结果进行了仿真。计算结果表明:设计后的几何扭转机翼展向环量分布达到目标椭圆分布形式,几何扭转机翼诱导阻力减小了17.07%,总阻力减小了15.43%,计算状态升阻比提高了6.5%。该方法对选取控制剖面进行设计,可实现性较强,具有一定工程应用价值。
The way how to reduce the induced drag in an aircraft design was researched and an inverse design method of geometric twist for the aircraft design was proposed to optimize its ratio of lift to drag. By defining the target circulation distribution
the method designed the geometric twists for controlled sections along the wing spanwise to implement the target distribution. A matrix expression for the integro-differential equations of Prandtl's lifting-line theory described by Fourier sine series was established. Then
the aerodynamic calculation
aerodynamic spanwise distribution calculation and geometric twist angle inverse design were programmed and a geometric twist wing was designed to achieve elliptical spanwise distribution. Finally
the optimized results were simulated by the forecast of program and Computational Fluid Dynamic (CFD). The simulation results indicate that the lift spanwise distribution of twisted wing is elliptic
the induced drag and total drag are decreased by 17.07% and 15.43%
respectively
and the ratio of lift to drag is improved by 6.5%. This method aims at controlled sections
shows better realizability
and gives out a reference for engineering applications.
WANG J C, SERN V C Y. Unmanned aerial vehicle development trends & technology forecast[J]. Military Technology, 2009, 33(2):70-80.
马汉东, 崔尔杰.大型飞机阻力预示与减阻研究[J].力学与实践, 2007, 29(2):1-8.
MA H D, CUI E J. Drag prediction and reduction for civil transportation aircraft[J]. Mechanics in Engineering, 2007, 29(2):1-8. (in Chinese)
TANG D M, DOWELL E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8):1430-1441.
司亮, 王和平, 龚翠翠.翼梢装置对机翼气动、结构特性影响研究[J].空气动力学学报, 2011, 29(2):177-181.
SI L, WANG H P, GONG C C. Investigation of effects of winglets on wing's aerodynamic and structural behavior[J].Acta Aerodynamica Sinica, 2011, 29(2):177-181. (in Chinese)
李凤蔚.空气与气体动力学引论[M].西安:西北工业大学出版社, 2007:129-132.
LI F W. Introduction of Air and Gas Dynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2007:129-132. (in Chinese)
《飞机设计手册》总编委会.飞机设计手册第6册:气动设计[M].北京:航空工业出版社, 2002.
EDITORIAL BOARD OF AIRCRAFT DESIGN HANDBOOK. Aircraft Design Handbook Vol.6:Aerodynamic Design[M]. Beijing:Aviation Industry Press, 2002.(in Chinese)
PHILLIPS W F. Lifting-line analysis for twisted wings and washout-optimized wings[J]. Journal of Aircraft, 2004, 41(1):128-136.
丁玲, 孙辉, 贾宏光, 等.应用遗传算法优化设计机翼复合材料蜂窝夹层结构蒙皮[J].光学 精密工程, 2014, 22(12):3272-3279.
DING L, SUN H, JIA H G, et al.. Optimization design of composite wing skin with honeycomb sandwich by genetic algorithm[J]. Opt. Precision Eng., 2014, 22(12):3272-3279. (in Chinese)
崔留争, 高思远, 贾宏光, 等.神经网络辅助卡尔曼滤波在组合导航中的应用[J].光学 精密工程, 2014, 22(5):1304-1311.
CUI L ZH, GAO S Y, JIA H G, et al.. Application of neural network aided Kalman filtering to SINS/GPS[J]. Opt. Precision Eng., 2014, 22(5):1304-1311. (in Chinese)
王晓鹏.基于遗传算法的飞机气动优化设计[J].计算力学学报, 2002, 19(2):188-201.
WANG X P. Optimization and design for aerodynamic configuration of aircraft based on genetic algorithm[J]. Chinese Journal of Computational Mechanics, 2002, 19(2):188-201.(in Chinese)
李岩, 朱自强, 王晓璐, 等.基于Euler方程的三维机翼厚度与扭角优化设计[J].北京航空航天大学学报, 2007, 33(3):269-272, 277.
LI Y, ZHU Z Q, WANG X L, et al.. Optimization design of wing's thickness and twist angle using Euler equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3):269-272, 277. (in Chinese)
TAKAHASHI T T, COOPERSMITH R M. Wing section design for a long-range hydrofoil transport[C]. AIAA, 2002.
RASMUSSEN M L, SMITH D E. Lifting-line theory for arbitrarily shaped wings[J]. Journal of Aircraft, 1999, 36(2):340-348.
李焦赞, 高正红, 詹浩.基于目标压力分布优化的翼型反设计方法研究[J].弹箭与制导学报, 2008, 28(1):187-190.
LI J Z, GAO ZH H, ZHAN H. Study on inverse design method of airfoil based on optimization of target pressure distribution[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1):187-190.(in Chinese)
杨旭东, 乔志德, 朱兵.基于欧拉方程的机翼设计方法及应用[J].空气动力学学报, 2001, 19(1):97-102.
YANG X D, QIAO ZH D, ZHU B.Wing design method and application based on Euler equations[J]. Acta Acrodynamica Sinica, 2001, 19(1):97-102. (in Chinese)
乔宇航, 马东立, 邓小刚.基于升力线理论的机翼几何扭转设计方法[J].北京航空航天大学学报, 2013, 39(3):320-324
QIAO Y H, MA D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):320-324. (in Chinese)
SCHMITT V, CHARPIN F. Pressure distributions on the ONERA-M6 wing at transonic mach numbers[R]. AGARD-AR-138, 1979.
0
浏览量
643
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构