浏览全部资源
扫码关注微信
济南大学 机械工程学院, 山东 济南 250022
[ "李映君 (1982-), 男, 山东烟台人, 副教授, 硕士生导师, 主要从事传感器与执行器测控技术、工业机器人技术、智能化仪器仪表技术等方面的研究。E-mail:me_liyj@ujn.edu.cn" ]
王桂从 (1981-), 女, 山东菏泽人, 讲师, 主要从事制造业信息化技术、遗传算法、智能化仪器仪表技术等方面的研究。E-mail:me_wanggc@ujn.edu.cn WANG Gui-cong, E-mail:me_wanggc@ujn.edu.cn
收稿日期:2016-09-22,
录用日期:2016-12-22,
纸质出版日期:2017-05-25
移动端阅览
李映君, 韩彬彬, 王桂从, 等. 基于径向基函数神经网络的压电式六维力传感器解耦算法[J]. 光学 精密工程, 2017,25(5):1266-1271.
Ying-jun LI, Bin-bin HAN, Gui-cong WANG, et al. Decoupling algorithms for piezoelectric six-dimensional force sensor based on RBF neural network[J]. Optics and precision engineering, 2017, 25(5): 1266-1271.
李映君, 韩彬彬, 王桂从, 等. 基于径向基函数神经网络的压电式六维力传感器解耦算法[J]. 光学 精密工程, 2017,25(5):1266-1271. DOI: 10.3788/OPE.20172505.1266.
Ying-jun LI, Bin-bin HAN, Gui-cong WANG, et al. Decoupling algorithms for piezoelectric six-dimensional force sensor based on RBF neural network[J]. Optics and precision engineering, 2017, 25(5): 1266-1271. DOI: 10.3788/OPE.20172505.1266.
针对四点支撑结构的压电式六维力传感器线性度差,维间耦合严重的问题,提出了基于径向基函数(RBF)神经网络的解耦算法。分析了耦合产生的主要原因,建立了RBF神经网络模型。通过对六维力传感器进行标定实验获取解耦所需的实验数据,并对实验数据进行处理。然后采用RBF神经网络优化传感器输出系统的多维非线性解耦算法,解耦出传感器的输入输出映射关系,得到解耦后的传感器输出数据。对传感器解耦后的数据分析表明:采用RBF神经网络的解耦算法得到的最大Ⅰ类误差和Ⅱ类误差分别为1.29%、1.56%。结果显示:采用RBF神经网络的解耦算法,能够更加有效地减小传感器的Ⅰ类误差和Ⅱ类误差,满足了传感器两类误差指标均低于2%的要求。该算法有效地提高了传感器的测量精度,基本解决了传感器解耦困难的难题,
For problems of poor linearity and too many inter-dimensional coupling errors of a four-point supporting piezoelectric six-dimensional force sensor
the decoupling algorithms based on Redial Basis Function (RBF) neural network were proposed. Main factors to produce coupling errors were analyzed and the RBF neural network was established. The six-dimensional force sensor was calibrated experimentally to obtain experimental data for decoupling
and the data were processed by the nonlinear decoupling algorithm based on RBF neural network. Then the mapping relation between input and output was acquired by decoupling and the decoupled data from the sensor was obtained. These data were analyzed
and the result shows that the biggest classⅠerror and classⅡerror by the proposed nonlinear decoupling algorithm based on RBF neural network are 1.29% and 1.56% respectively. The experimental analysis shows that it will effectively reduce the classⅠerrors and the classⅡerrors through nonlinear decoupling algorithm based on RBF neural network
and meets the requirements that the two kinds of error indicators of the sensor should be less than 2%.The proposed algorithm improves the measuring accuracy of sensors and overcomes the difficulty on decoupling.
刘砚涛, 郭冰, 尹伟, 等.六维力传感器静态标定及解耦研究[J].强度与环境, 2013, 40(1):44-49.
LIU Y T, GUO B, YIN W, et al.. Research on static calibration and decoupling for six-axis force sensor[J]. Structure & Environment Engineering, 2013, 40(1):44-49. (in Chinese)
曹哲. 一种轻量级主动式的无线传感器网络时间同步算法[D]. 长春: 东北师范大学, 2009.
CAO Z.A lightweight and active time synchronization algorithm in wireless sensor network[D].Changchun:Northeast Normal University, 2009. (in Chinese)
梁桥康, 王耀南.超薄六维力/力矩传感器优化设计及其解耦[J].湖南大学学报 (自然科学版), 2012, 39(6):53-57.
LIANG Q K, WANG Y N. Optimal design of a thin six-dimensional F/T sensor and its nonlinear decoupling[J].Journal of Hunan University (Natural Sciences), 2012, 39(6):53-57.(in Chinese)
马迎坤, 张希农.多维传感器标定的支持向量机复合式方法[J].航空动力学报, 2011, 26(6):1274-1281.
MA Y K, ZHANG X N. Support vector machine complex method for multi-dimensional sensor calibration[J]. Journal of Aerospace Power, 2011, 26(6):1274-1281.(in Chinese)
DWARAKANATH T A, DASGUPTA B, MRUTHYUNJAYA T S. Design and development of a Stewart platform based force-torque sensor[J]. Mechatronics, 2001, 11(7):793-809.
KANG C G. Closed-form force sensing of a 6-axis force transducer based on the Stewart platform[J].Sensors and Actuators A:Physical, 2001, 90(1-2):31-37.
马俊青, 宋爱国, 吴涓.三维力传感器静态解耦算法的研究与应用[J].计量学报, 2011, 32(6):517-521.
MA J Q, SONG A G, WU J. Research and application of static decoupling for 3-axis wrist force sensor[J].Acta Metrologica Sinica, 2011, 32(6):517-521.(in Chinese)
曹会彬, 孙玉香, 刘利民, 等.多维力传感器耦合分析及解耦方法的研究[J].传感技术学报, 2011, 24(8):1136-1140.
CAO H B, SUN Y X, LIU L M, et al.. Coupling analysis of multi-axis force sensor and research of decoupling method[J]. Chinese. Journal of Sensors and Actuators, 2011, 24(8):1136-1140. (in Chinese)
0
浏览量
514
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构