浏览全部资源
扫码关注微信
西安电子科技大学 机电工程学院, 陕西 西安 710071
樊康旗 (1979-), 男, 陕西西安人, 博士, 副教授, 2005年、2007年于西安电子科技大学分别获得硕士、博士学位。主要是从事微机电系统的力学分析和微能源收集技术的研究。E-mail:kqfan@mail.xidian.edu.cn FAN Kang-qi, E-mail:kqfan@mail.xidian.edu.cn
[ "刘朝辉 (1992-), 男, 山西晋中人, 硕士, 2014年于山西大同大学获得学士学位, 主要研究方向为微机电系统。E-mail:lzh920202@163.com" ]
收稿日期:2016-10-25,
录用日期:2016-12-26,
纸质出版日期:2017-05-25
移动端阅览
樊康旗, 刘朝辉, 王连松, 等. 从人体行走中收集能量的鞋上压电俘能器[J]. 光学 精密工程, 2017,25(5):1272-1280.
Kang-qi FAN, Zhao-hui LIU, Lian-song WANG, et al. Shoe-mounted piezoelectric energy harvester for collecting energy from human walking[J]. Optics and precision engineering, 2017, 25(5): 1272-1280.
樊康旗, 刘朝辉, 王连松, 等. 从人体行走中收集能量的鞋上压电俘能器[J]. 光学 精密工程, 2017,25(5):1272-1280. DOI: 10.3788/OPE.20172505.1272.
Kang-qi FAN, Zhao-hui LIU, Lian-song WANG, et al. Shoe-mounted piezoelectric energy harvester for collecting energy from human walking[J]. Optics and precision engineering, 2017, 25(5): 1272-1280. DOI: 10.3788/OPE.20172505.1272.
设计了一种安装在鞋上的压电俘能器(PEH),用于收集人体行走时产生的能量。该俘能器由4根压电悬臂梁和1个弹簧-质量系统组成。弹簧-质量系统能够感知沿径骨轴的加速度激励,并通过磁耦合驱动压电梁振动从而发电。文中通过拟合实验数据获得加速度信号表达式;然后,建立仿真模型,对俘能器的发电性能进行了仿真分析。最后,加工了实验样机,并实验测试了俘能器的发电性能。结果表明,当受到沿胫骨方向的激励时,压电梁在一个步态周期内可被弹簧-质量系统激励多次从而产生多个峰值电压;受到沿胫骨和脚面两个方向激励时,压电梁的发电性能比只受到单一方向激励时好。当步行速度为2~8 km/h时,每根压电梁的峰值电压可达到10 V。该俘能器能够从人体行走的超低频运动中收集能量,并能够同时收集两个方向的加速度能量,提高了压电梁的发电性能。
A shoe-mounted piezoelectric energy harvester was designed to collecting energy from human walking. This energy harvester comprises of four piezoelectric cantilever beams magnetically coupled with a spring-mass system. The spring-quality system could sense the acceleration excitation along a radial bone shaft and generate electricity through the magnetic coupling driving a piezoelectric element. The expression of acceleration signals was obtained by fitting the experimental data. And then
a simulation model was established to simulate the power generation performance of the energy harvester. Finally
a prototype was also fabricated and its performance was verified by an experimental test. The results indicate that the four beams could be triggered several times by the spring-mass system within one step when the energy harvester is excited by the acceleration along the tibial axis
and several piezoelectric beam voltage outputs could be obtained. Furthermore
the power-generating capacity of the piezoelectric beam excited by the coupled accelerations is always better than that excited by the single direction acceleration. When walking speed ranges from 2 km/h to 8 km/h
the peak voltage output from each beam is as large as 10 V. The piezoelectric energy harvester collects the energy from human walking in low frequency and the superposition of voltage outputs generated by accelerations comes from two orthogonal directions
so that the power-generating capacity is improved greatly.
FAN K Q, MING Z F, XU C H, et al.. The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion[J]. Chinese Physics B, 2013, 22(10):104502.
TANG L H, YANG Y W. A nonlinear piezoelectric energy harvester with magnetic oscillator[J]. Applied Physics Letters, 2012, 101(9):094102.
PILLATSCH P, YEATMAN E M, HOLMES A S. A scalable piezoelectric impulse-excited energy harvester for human body excitation[J]. Smart Materials and Structures, 2012, 21(21):115018-115026.
AIDIN D, VOIX J. Flexible piezoelectric energy harvesting from jaw movements[J]. Smart Materials & Structures, 2014, 23(10):105020-105027.
TANG L H, YANG Y W, SOH C K. Improving functionality of vibration energy harvesters using magnets[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(13):1433-1449.
FAN K Q, CHANG J W, CHAO F B, et al.. Design and development of a multipurpose piezoelectric energy harvester[J]. Energy Conversion and Management, 2015, 96:430-439.
FAN K Q, CHANG J W, PEDRYCZ W, et al.. A nonlinear piezoelectric energy harvester for various mechanical motions[J]. Applied Physics Letters, 2015, 106(22):223902.
SU W J, ZU J. An innovative tri-directional broadband piezoelectric energy harvester[J]. Applied Physics Letters, 2013, 103(20):203901.
SHENCK N S, PARADISO J A. Energy scavenging with shoe-mounted piezoelectrics[J]. IEEE Micro, 2001, 21(3):30-42.
GRANSTROM J, FEENSTRA J, SODANO H A, et al.. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps[J]. Smart Materials and Structures, 2007, 16(5):1810-1820.
RENAUD M, FIORINI P, VAN SCHAIJK R, et al.. Harvesting energy from the motion of human limbs:the design and analysis of an impact-based piezoelectric generator[J]. Smart Materials and Structures, 2009, 18(3):035001.
YANG R S, QIN Y, LI C, et al.. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator[J]. Nano Letters, 2009, 9(3):1201-1205.
MORO L, BENASCIUTTI D. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers[J]. Smart Materials and Structures, 2010, 19(11):115011.
POZZI M, ZHU M L. Plucked piezoelectric bimorphs for knee-joint energy harvesting:modelling and experimental validation[J]. Smart Materials and Structures, 2011, 20(5):55007.
YLLI K, HOFFMANN D, WILLMANN A, et al.. Energy harvesting from human motion:exploiting swing and shock excitations[J]. Smart Materials and Structures, 2015, 24(2):025029.
FAN K Q, CHAO F B, ZHANG J G, et al.. Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester[J]. Energy Conversion and Management, 2014, 86:561-567.
AKOUN G, YONNET J P. 3D analytical calculation of the forces exerted between two cuboidal magnets[J]. IEEE Transactions on Magnetics, 1984, 20(5):1962-1964.
0
浏览量
554
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构