浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "王鹤淇 (1983-), 男, 吉林长春人, 博士, 助理研究员, 2007年于吉林大学获得学士学位, 2012年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事光电装备测试性设计技术及自动控制方面的研究。E-mail:whq200808@sina.com" ]
刘廷霞 (1973-) 女, 吉林抚松人, 博士, 研究员, 1998年、2002年于吉林工学院分别获得学士、硕士学位, 2005年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事光电经纬仪的精密控制及其算法方面的研究。E-mail:liutingxia2001@sohu.com LIU Ting-xia, E-mail:liutingxia2001@sohu.com
收稿日期:2016-05-13,
录用日期:2016-8-31,
纸质出版日期:2017-05-25
移动端阅览
王鹤淇, 王伟国, 郭立红, 等. 离散萤火虫算法的复杂装备测试点优化选择[J]. 光学 精密工程, 2017,25(5):1357-1367.
He-qi WANG, Wei-guo WANG, Li-hong GUO, et al. Optimization selection of test points on complex equipment for discrete firefly algorithm[J]. Optics and precision engineering, 2017, 25(5): 1357-1367.
王鹤淇, 王伟国, 郭立红, 等. 离散萤火虫算法的复杂装备测试点优化选择[J]. 光学 精密工程, 2017,25(5):1357-1367. DOI: 10.3788/OPE.20172505.1357.
He-qi WANG, Wei-guo WANG, Li-hong GUO, et al. Optimization selection of test points on complex equipment for discrete firefly algorithm[J]. Optics and precision engineering, 2017, 25(5): 1357-1367. DOI: 10.3788/OPE.20172505.1357.
测试点优化选择是复杂装备测试性设计的重要环节,本文提出一种用于解决测试点优化选择问题的离散萤火虫算法(DFA)。首先建立了测试点优化选择问题的数学模型,接着对传统的萤火虫算法(FA)进行了离散化改进,给出了离散化萤火虫算法的实施步骤,并分析了不同的吸引度函数和二值化函数(sigmoid和tanh函数)对算法结果的影响。最后针对5个不同规模的实际系统验证了离散萤火虫算法的有效性,并与粒子群算法(PSO)和遗传算法(GA)等传统的元启发式搜索算法的计算性能进行了比较分析。结果显示:在满足系统要求的故障检测率和故障隔离率的前提下,利用本文提出的离散萤火虫算法得到的5个系统测试代价最优值分别比PSO算法和GA算法平均降低了10.1%和14.6%。实验结果表明:离散萤火虫算法能快速收敛到更高质量的全局最优解,避免过早收敛而陷入局部最优值,对于解决大型复杂装备的测试点优化选择问题具有很好的应用前景。
Optimization selection of test points is an important step of testability design for complex equipment
so a Discrete Firefly Algorithm (DFA) used for solving optimization selection problem of test points was proposed. First of all
the mathematical model of optimization selection problem of test points was built
then discretization improvement was conducted on the traditional firefly algorithm
and the implementation steps of the DFA were given
later the effect of different attraction functions and binarization functions (sigmoid and tanh functions) on the result of the algorithms was also analyzed. Finally
The DFA was applied to five real systems with different sizes to verify the effectiveness
and the computational efficiency of DFA was compared with particle swarm optimization (PSO) and genetic algorithm (GA). In premise of complying with fault detection rate and fault isolation rate the system requires
optimal value of test cost for 5 systems from proposed DFA respectively reduced by 10.1% and 14.6% compared with PSO algorithm and GA algorithm. The experimental result shows:DFA can quickly converge to the global optimal solution of higher quality
and it can avoid trapping into local optimal solution
so it has very good application prospect to solve optimization solution problem of test points for large-scale complex equipment.
石君友.测试性设计分析与验证[M].北京:国防工业出版社, 2011.
SHI J Y. Testability Design, Analysis and Verification[M]. Beijing:National Defense Industry Press, 2011.(in Chinese)
刘晶红, 孙辉, 沈宏海, 等.机载光电成像设备的可测试性系统设计[J].光学 精密工程, 2008, 16(12):2435-2440.
LIU J H, SUN H, SHEN H H, et al.. Design of testable system for airborne optoelectronic imaging equipment[J]. Opt. Precision Eng., 2008, 16(12):2435-2440.(in Chinese)
PATTIPATI K R, ALEXANDRIDIS M. Application of heuristic search and information theory to sequential fault diagnosis[J]. IEEE Transactions on System, Man, And Cybernetics, 1990, 20(4):872-887.
VIJAYA R, MOJDEH S, KRISHNA P. Optimal and near-optimal test sequencing algorithms with realistic test models[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part a:Systems And Humans, 1999, 29(1):11-26.
黎琼炜, 胡政, 易晓山, 等.系统级BIT设计中的测试选择方法[J].计算机工程与应用, 2001(19):127-129, 153.
LI Q W, HU ZH, YI X SH, et al.. Test selection algorithm in system-level BIT design[J]. 2001(19):127-129, 153.(in Chinese)
杨鹏, 邱静, 刘冠军, 等.基于布尔逻辑的测试选择算法[J].测试技术学报, 2007, 21(5):386-390.
YANG P, QIU J, LIU G J, et al.. The test selection algorithms based on boolean logic[J]. Journal of Test and Measurement Technology, 2007, 21(5):386-390.(in Chinese)
赵东, 赵宏伟, 于繁华.动态多目标优化的运动物体图像分割[J].光学 精密工程, 2015, 23(7):2109-2116.
ZHAO D, ZHAO H W, YU F H. Moving object image segmentation by dynamic multi-objective optimization[J]. Opt. Precision Eng., 2015, 23(7):2109-2116.(in Chinese)
单泽彪, 石要武, 刘小松, 等.应用人工蜂群算法的动态波达方向跟踪[J].光学 精密工程, 2015, 23(3):838-845.
SHAN Z B, SHI Y W, LIU X S, et al.. DOA tracking of moving targets by artificial bee colony algorithm[J].Opt. Precision Eng., 2015, 23(3):838-845.(in Chinese)
苏永定, 钱彦岭, 邱静.基于启发式搜索策略的测试选择问题研究[J].中国测试技术, 2005, 31(5):46-48, 79.
SU Y D, QIAN Y L, QIU J. Heuristic search in test selection[J]. China Measurement Technology, 2005, 31(5):46-48, 79.(in Chinese)
连光耀. 基于信息模型的装备测试性设计与分析方法研究[D]. 石家庄: 军械工程学院, 2007.
LIAN G Y. Research on design and analysis methods for testability of equipment based on information model [D].Shijiazhuang:Ordnance Engineering College, 2007.(in Chinese)
吕晓明, 黄考利, 连光耀, 等.基于混沌遗传算法的测试选择优化问题研究[J].弹箭与制导学报, 2009, 29(3):265-268.
LV X M, HUANG K L, LIAN G Y, et al.. Research on the problem of test selection optimization based on chaos genetic algorithm[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(3):265-268.(in Chinese)
雷华军, 秦开宇.基于改进量子进化算法的测试优化选择[J].仪器仪表学报, 2013, 34(4):838-844.
LEI H J, QIN K Y.Optimal test selection based on improved quantum-inspired evolutionary algorithm[J]. Chinese Journal of Scientific Instrument, 2013, 34(4):838-844.(in Chinese)
陈希祥, 邱静, 刘冠军.基于混合二进制粒子群-遗传算法的测试优化选择研究[J].仪器仪表学报, 2009, 30(8):1674-1680.
CHEN X X, QIU J, LIU G J. Optimal test selection based on hybrid BPSO and GA[J]. Chinese Journal of Scientific Instrument, 2009, 30(8):1674-1680.(in Chinese)
YANG X SH. Firefly algorithm, Stochastic test functions and design optimisation[J]. Int. J. Bio-Inspired Computation, 2010, 2(2):78-84.
WANG G G, GUO L H, DUAN H, et al.. A new improved firefly algorithm for global numerical optimization[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(2):477-485.
YANG X SH, HE X SH. Firefly algorithm:recent advances and applications[J].Int. J. Swarm Intelligence, 2013, 1(1):36-50.
CHANDRASEKARAN K, SISHAJ P S. Network and reliability constrained unit commitment problem using binary real coded firefly algorithm[J]. Electrical Power and Energy Systems, 2012, 43:921-932.
KARTHIKEYAN S, ASOKAN P, NICKOLAS S, et al.. A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems[J]. International Journal of Bio-Inspired Computation, 2015, 7(6):386-401.
SAHU R K, PANDA S, PADHAN S. A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems[J]. International Journal of Electrical Power & Energy Systems, 2015, 64:9-23.
LIANG R H, WANG J C, CHEN Y T, et al.. An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration[J]. International Journal of Electrical Power & Energy Systems, 2015, 64:1088-1097.
KANNAN G, SUBRAMANIAN D P, SHANKAR R T U. Reactive Power Optimization Using Firefly Algorithm[M].Springer India, Power Electronics and Renewable Energy Systems, 2015:83-90.
CHIANG C L. Firefly algorithm for power economic emission dispatch[C].Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014). Springer International Publishing, 2016:9-16.
SARANYA R, VIJAYAN V. Design OFPI controllers for unstable mimo system using firefly algorithm[J]. International Journal of Science and Research, 2015, 4(5):294-299.
SAHU R K, PANDA S, PRADHAN P C. Design and analysis of hybrid firefly algorithm-pattern search based fuzzy PID controller for LFC of multi area power systems[J]. International Journal of Electrical Power & Energy Systems, 2015, 69:200-212.
SEKHAR G T C, SAHU R K, BALIARSINGH A K, et al.. Load frequency control of power system under deregulated environment using optimal firefly algorithm[J]. International Journal of Electrical Power & Energy Systems, 2016, 74:195-211.
SHAMSHIRBAND S, PETKOVIĆD, PAVLOVICĆN T, et al.. Support vector machine firefly algorithm based optimization of lens system[J]. Applied optics, 2015, 54(1):37-45.
SINGH A, THAPAR S, BHATIA A, et al.. Disk scheduling using a customized discrete firefly algorithm[J]. Cogent Engineering, 2015, 2(1):1011929.
SU H, YONG B, DU Q. Hyperspectral band selection using improved firefly algorithm[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(1):68-72.
NADEEM A, SHANKAR T, SHARMA R K, et al.. An application of firefly algorithm for clustering in wireless sensor networks[C].Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. Springer India, 2016:869-878.
SOTO R, CRAWFORD B, LAMA J, et al.. A Firefly Algorithm to Solve the Manufacturing Cell Design Problem[M].Artificial Intelligence Perspectives in Intelligent Systems. Springer International Publishing, 2016:103-114.
陈恺, 陈芳, 戴敏, 等.基于萤火虫算法的二维熵多阈值快速图像分割[J].光学 精密工程, 2014, 22(2):517-523.
CHEN K, CHEN F, DAI M, et al.. Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm[J]. Opt. Precision Eng., 2014, 22(2):517-523.(in Chinese)
张士刚. 基于多信号模型的诊断策略优化与生成技术研究[D]. 长沙: 国防科技大学, 2008.
ZHANG SH G. Research on the optimization and generation techniques for diagnostic strategy based on multi-signal model[D]. Changsha National University of Defense Technology, 2008.(in Chinese)
0
浏览量
737
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构