浏览全部资源
扫码关注微信
1.吉林大学 通信工程学院, 吉林 长春 130012
2.长春师范大学 计算机科学与技术学院, 吉林 长春 130032
3.阿萨巴斯卡大学 计算与信息系统学院, 加拿大 艾伯塔 T9S3A3
黄文博 (1980-), 男, 吉林长春人, 博士研究生, 副教授, 硕士生导师, 2002年于吉林工程技术师范学院获得学士学位, 2009年于长春理工大学获得硕士学位, 主要从事机器学习及图像处理方面的研究。E-mail:huangwenbo@cncnc.edu.cn HUANG Wen-bo, E-mail:huangwenbo@cncnc.edu.cn
收稿日期:2016-12-19,
录用日期:2017-1-24,
纸质出版日期:2017-05-25
移动端阅览
黄文博, 王珂, 燕杨. 彩色视网膜眼底图像血管自动检测方法[J]. 光学 精密工程, 2017,25(5):1378-1386.
Wen-bo HUANG, Ke WANG, Yang YAN. Automatic detection method of blood vessel for color retina fundus images[J]. Optics and precision engineering, 2017, 25(5): 1378-1386.
黄文博, 王珂, 燕杨. 彩色视网膜眼底图像血管自动检测方法[J]. 光学 精密工程, 2017,25(5):1378-1386. DOI: 10.3788/OPE.20172505.1378.
Wen-bo HUANG, Ke WANG, Yang YAN. Automatic detection method of blood vessel for color retina fundus images[J]. Optics and precision engineering, 2017, 25(5): 1378-1386. DOI: 10.3788/OPE.20172505.1378.
为了给视网膜图像配准、光照校正及视网膜内部病理学检测等问题提供有效依据,本文提出一种有效检测及识别彩色视网膜眼底图像血管的全自动方法。针对视网膜可见血管呈长条型管状、局部具有较好直线型结构的形态特点,本文采取适用于条状结构的组合移位滤波响应模型进行特征提取。针对血管和血管末端特征的不同,分别配置对称和非对称的两种滤波模型进行跟踪,利用组合移位滤波模型(对称和非对称)获取到的响应及G通道像素灰度值共同构建特征向量库,采用AdaBoost分类器对各个像素点进行分类判定。基于国际公共数据库DRIVE与STARE的实验结果表明,该方法针对两个标准数据库的分割结果(DRIVE:Accuracy=0.948 9,Sensitivity=0.765 7,Specificity=0.980 9;STARE:Accuracy=0.956 7,Sensitivity=0.771 7,Specificity=0.976 6)均优于已有方法,适用于彩色视网膜眼底图像的计算机辅助定量分析,可作为临床借鉴。
In order to provide effective foundation for retinal image registration
illumination adjustment and pathological detection of retina interior and other problems
a fully automatic method of detecting and recognizing blood vessel for color retina fundus images effectively was proposed. Aimed at the state with elongated tubular shape and preferably linear structure in local part of visible blood vessel
combinatorial shifted filter response model that is applicable to strip structure was used for feature extraction. Taking different features of blood vessel and the end of blood vessel into consideration
two types of filtering modes with symmetry and dissymmetry were configured for tracking
feature vector library was established by response acquired from combinatorial shifting filter response model (symmetry and dissymmetry) and G channel pixel value together and each pixel was classified and determined by AdaBoost classifier. The experimental result based on international public database DRIVE and STARE shows that the segmentation result of proposed method on two standard databases (DRIVE:Accuracy=0.948 9
Sensitivity=0.765 7
Specificity=0.980 9; STARE:Accuracy=0.956 7
Sensitivity=0.771 7
Specificity=0.976 6) is better than existing methods. It is applicable to computer-assisted quantitative analysis of color retina fundus images and can be used as clinical reference.
邹北骥, 张思剑, 朱承璋.彩色眼底图像视盘自动定位与分割[J].光学 精密工程, 2015, 23(4):1187-1195.
ZOU B J, ZHANG S J, ZHU CH ZH.Automatic localization and segmentation of optic disk in color fundus image[J].Opt. Precision Eng., 2015, 23(4):1187-1195. (in Chinese)
孙延奎.光学相干层析医学图像处理及其应用[J].光学 精密工程, 2014, 22(4):1086-1104.
SUN Y K. Medical image processing techniques based on optical coherence tomography and their applications[J].Opt. Precision Eng., 2014, 22(4):1086-1104.(in Chinese)
CHAUDHURI S, CHATTERJEE S, KATZ N. Detection of blood vessels in retinal images using two-dimensional matched filters[J].IEEE Transactions on Medical Imaging, 1989, 8(3):263-269.
HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J].IEEE Transactions on Medical Imaging, 2000, 19(3):203-210.
MMENDONCA A M, CAMPILHO A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction[J].IEEE Transactions on Medical Imaging, 2006, 25(9):1200-1213.
RICCI E, PERFETTI R. Retinal blood vessel segmentation using line operators and support vector classification[J].IEEE Transactions on Medical Imaging, 2007, 26(10):1357-1365.
STAAL J, ABRÁMOFF M D, NIEMEIJER M. Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging, 2004, 23(4):501-509.
SOARES J V B, LEANDRO J J G, CESAR R M. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J].IEEE Transactions on Medical Imaging, 2006, 25(9):1214-1222.
MARÍN D, AQUINO A, GEGUĆNDEZ-ARIAS M E, et al.. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features[J].IEEE Transactions on Medical Imaging, 2011, 30(1):146-158.
FRAZ M M, REMAGNINO P, HOPPE A, et al..An ensemble classification-based approach applied to retinal blood vessel segmentation[J].IEEE Transactions on Biomedical Engineering, 2012, 59(9):2538-2548.
AZZOPARDI G, PETKOV N. A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model[J].Biological Cybernetics, 2012, 106(3):177-189.
AZZOPARDI G, STRISCIUGLIO N, VENTO M. Trainable COSFIRE filters for vessel delineation with application to retinal images[J].Medical Image Analysis, 2015, 19(1):46-57.
LUPASCU C A, TEGOLO D, TRUCCO E. FABC:retinal vessel segmentation using AdaBoost[J].IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5):1267-1274.
SHAHRIAN E V, YOUSEFI S, ISFAHANI A M. Vessels segmentation in color retinal images using ensemble of bagged decision trees and patched based principle component analysis and linear discriminant analysis[J].Investigative Ophthalmology & Visual Science, 2015, 56(7):5262.
ZHU C Z, ZOU B J, ZHAO R C. Retinal vessel segmentation in colour fundus images using Extreme Learning Machine[J].Computerized Medical Imaging and Graphics, 2017, 55(SI):68-77.
HATANAKA Y, TACHIKI H, OGOHARA K. Artery and vein diameter ratio measurement based on improvement of arteries and veins segmentation on retinal images[C]. 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), IEEE, 2016:1336-1339.
RODRIGUES J, BEZERRA N. Retinal vessel segmentation using parallel grayscale skeletonization algorithm and mathematical morphology[C].Conference on Graphics, Patterns and Images, 2016.
OLIVEIRA W S, TEIXEIRA J V, REN T I. Unsupervised retinal vessel segmentation using combined filters[J].PloS one, 2016, 11(2):e0149943.
LU C Y, JING B Z, CHAN P P K. Vessel enhancement of low quality fundus image using mathematical morphology and combination of Gabor and matched filter[C]. 2016 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), IEEE, 2016:168-173.
0
浏览量
518
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构