浏览全部资源
扫码关注微信
福建省计量科学研究院 国家光伏产业计量测试中心, 福建 福州 350003
林剑春(1985-), 男, 福建莆田人, 工程师, 2008年于清华大学获得学士学位, 2013年于中国科学院上海技术物理研究所获得博士学位, 主要从事红外成像、航天遥感、光伏计量测试技术的研究。E-mail:linjc04@163.com LIN Jian-chun, E-mail: linjc04@163.com
收稿日期:2017-02-14,
录用日期:2017-3-20,
纸质出版日期:2017-06-25
移动端阅览
林剑春, 杨爱军, 沈熠辉. 电致发光缺陷检测仪的成像性能评估[J]. 光学 精密工程, 2017,25(6):1418-1424.
Jian-chun LIN, Ai-jun YANG, Yi-hui SHEN. Evaluation of imaging performance for electroluminescence defect detector[J]. Optics and precision engineering, 2017, 25(6): 1418-1424.
林剑春, 杨爱军, 沈熠辉. 电致发光缺陷检测仪的成像性能评估[J]. 光学 精密工程, 2017,25(6):1418-1424. DOI: 10.3788/OPE.20172506.1418.
Jian-chun LIN, Ai-jun YANG, Yi-hui SHEN. Evaluation of imaging performance for electroluminescence defect detector[J]. Optics and precision engineering, 2017, 25(6): 1418-1424. DOI: 10.3788/OPE.20172506.1418.
针对电致发光缺陷检测仪的成像性能不一致的现状,结合光伏组件自身的电致发光原理,对分辨率、图像均匀性、图像显示等技术指标进行了分析和比较,提出了一种适用于光伏组件生产线现场快速有效的检测技术。研制了相应的检测评估装置,开展了相关测试试验。实验结果表明,利用该技术对粘贴在组件上的分辨率测试板的图像进行视觉判读,可实现1.98 lp/mm(线对每毫米)的最高分辨率检测以及0.1 mm线宽的最小单条纹缺陷模拟检测,从而保证光伏组件的缺陷检测工作能够更加准确有效,促进光伏产业的质量提升。经测试,该评估技术适用于光伏组件生产线上的电致发光缺陷检测仪,可满足目前光伏产业的检测需求。
Technical indexes such as resolution
image uniformity
and image display were analyzed and compared
aiming at the inconsistency of current imaging performance of electroluminescent (EL) defect detector in combination with electroluminescent principles of Photovoltaic (PV) modules. A rapid and effective on-line detection technique for PV modules was proposed. Corresponding detection and assessment devices were developed
and related test experiments were implemented. The experiment results show that for a visual judgment of images on test board of resolution ratio pasted in modules
the technique can realize a detection with the highest resolution of 1.98 lp/mm and a simulative detection of minimum single stripe flaw with line width of 0.1 mm
thus guaranteeing more accurate and effective defect detection for PV modules and promoting production quality of PV industry. The assessment technique is feasible to EL defect detector in production line of PV modules and can satisfy current detection demands of photovoltaic industry.
FUYUKI T, KONDO H, YAMAZAKI T, et al.. Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence[J]. Applied Physics Letters, 2005, 86(26): 262108.
RAU U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells[J]. Physical Review B, 2007, 76: 085303.
KENDIG D, ALERS G B, SHAKOURI A. Characterization of defects in photovoltaics using thermoreflectance and electroluminescence imaging[C]. Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, IEEE, 2010: 1733-1736.
WEBER T, BENFARES E, KRAUTER S, et al.. Electroluminescence on the TCO corrosion of thin film modules[C]. 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, EU PVSEC, 2010: 3169-3173.
GUO S Y, SCHNELLER E, DAVIS K O, et al.. Quantitative analysis of crystalline silicon wafer PV modules by electroluminescence imaging[C]. Proceedings of 2016 IEEE 43rd Photovoltaic Specialists Conference, IEEE, 2016: 3688-3692.
ADAMS J, DOLL B, BUERHOP-LUTZ C, et al.. Non-stationary outdoor el-measurements with a fast and highly sensitive InGaAs camera[C]. 32nd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, 2016: 1837-1841.
GADE V, SHIRADKAR N, VAISHNAV S, et al.. Performance evaluation of PV modules after accelerated testing followed by four years of field exposure in hot-humid climate of Florida[C]. 32nd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, 2016: 1915-1919.
BERTANI D, LICIOTTI C, GUASTELLA S, et al.. Investigation and diagnostic tool comparison: infrared thermography vs. electroluminescence[C]. 32nd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, 2016: 2098-2104.
LOUWEN A, DE WAAL A C, SCHROPP R E I, et al.. Comprehensive characterisation and analysis of PV module performance under real operating conditions[J]. Progress in Photovoltaics, 2017, 25(3): 218-232.
KOCH S, WEBER T, SOBOTTKA C, et al.. Outdoor electroluminescence imaging of crystalline photovoltaic modules: comparative study between manual ground-level inspections and drone-based aerial surveys[C]. 32nd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, 2016: 1736-1740.
陈文志, 张凤燕, 张然, 等.基于电致发光成像的太阳能电池缺陷检测[J].发光学报, 2013, 34(8): 1028-1034.
CHEN W ZH, ZHANG F Y, ZHANG R, et al.. Defect detection of solar cells based on electroluminescence imaging[J]. Chinese Journal of Luminescence, 2013, 34(8): 1028-1034. (in Chinese)
鲁伟明, 李省, 张付特, 等.基于不同电压下的电致发光和红外成像的太阳能电池缺陷检测[J].发光学报, 2014, 35(12): 1511-1519.
LU W M, LI X, ZHANG F T, et al.. Defect detection of solar cell based on electroluminescence and thermography imaging with different bias voltage[J]. Chinese Journal of Luminescence, 2014, 35(12): 1511-1519. (in Chinese)
刘恩科, 朱秉生, 罗晋生, 等.半导体物理学[M].西安:西安交通大学出版社, 1998.
LIU E K, ZHU B SH, LUO J SH, et al.. The Physics of Semiconductors[M]. Xi'an: Xi'an Jiaotong University Press, 1998. (in Chinese)
沈文忠.太阳能光伏技术与应用[M].上海:上海交通大学出版社, 2013.
SHEN W ZH. Solar Photovoltaic Technologies and Applications[M]. Shanghai: Profile of Shanghai Jiao Tong University Press, 2013. (in Chinese)
肖娇, 徐林, 曹建明.缺陷太阳电池EL图像及伏安特性分析[J].现代科学仪器, 2010(5): 105-108.
XIAO J, XU L, CAO J M. Electroluminescence images and I-V characteristic analysis of defective crystalline silicon solar cells[J]. Modern Scientific Instruments, 2010(5): 105-108. (in Chinese)
0
浏览量
109
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构