浏览全部资源
扫码关注微信
浙江师范大学 精密机械研究所, 浙江 金华 321004
[ "阚君武(1965-), 男, 吉林榆树人, 教授, 博士生导师, 1991年、2000年于吉林工业大学分别获得学士、硕士学位, 2003年于吉林大学获得博士学位, 2005年中国科学院长春光学精密机械与物理研究所博士后出站, 主要从事压电驱动器、能量回收与自供电技术、精密机械与微小机械等方面的研究。E-mail:jutkjw@163.com" ]
王淑云(1965-), 女, 吉林长岭人, 教授, 1988年、2001年和2008年于吉林大学分别获得学士、硕士和博士学位, 主要从事工程问题的理论建模、仿真分析及优化等方面的研究。E-mail:jutwsy@163.com WANG Shu-yun, E-mail:jutwsy@163.com
收稿日期:2016-11-02,
录用日期:2017-2-17,
纸质出版日期:2017-06-25
移动端阅览
阚君武, 富佳伟, 王淑云, 等. 涡激振动式微型流体俘能器的研究现状与展望[J]. 光学 精密工程, 2017,25(6):1502-1512.
Jun-wu KAN, Jia-wei FU, Shu-yun WANG, et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Optics and precision engineering, 2017, 25(6): 1502-1512.
阚君武, 富佳伟, 王淑云, 等. 涡激振动式微型流体俘能器的研究现状与展望[J]. 光学 精密工程, 2017,25(6):1502-1512. DOI: 10.3788/OPE.20172506.1502.
Jun-wu KAN, Jia-wei FU, Shu-yun WANG, et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Optics and precision engineering, 2017, 25(6): 1502-1512. DOI: 10.3788/OPE.20172506.1502.
随着微纳器件应用领域的日益拓展,微能源技术受到国内外研究人员的高度关注和重视,其中利用涡激振动进行流体能量收集是主要的研究热点。本文首先介绍了基于涡激振动的流体能量收集原理,归纳了涡激振动式微流体俘能器的典型结构、原理、特性和应用情况。其次,总结了国内外基于尾涡致动和钝体致振这两种主要涡激振动流体俘能技术的发展概况与研究进展,并简述了涡激振动压电式俘能器流固耦合数学模型的研究现状。最后,指出涡激振动能量收集尚缺乏统一的数学模型以及现有的俘能器存在结构可靠性低、稳定性较差等问题。在此基础上,分析了利用涡激振动实现流体能量收集接下来的发展趋势,以期推动涡激振动式微流体俘能器的进一步发展与应用。
With gradually expansion of the application field for micro-nano devices
micro energy technology have been paying more and more concerns and attentions by domestic and oversea researchers
among which micro fluid energy harvester based on the vortex-induced vibration(VIFEH) has become a hotspot. First
the operational principle of the VIFEH was introduced and the typical structure
theory
features and application situation of VIFEH were generalized. Then
the relative technology development and research progress of the fluid energy harvester with wake-induced vibration and that with vibrational bluff body were summarized and the research status of fluid solid coupling mathematical model for VIFEH was briefly described. The analysis results show that VIFEH still lack the uniform mathematical model and there are low reliability and comparably low stability in the existing VIFEH structure. Moreover
further development trend of VIFEH was pointed out. It is expected to promote the research and applications of VIFEH through this work.
SAADON S, SIDEK O. A review of vibration-based MEMS piezoelectric energy harvesters [J]. Energy Conversion and Management, 2011, 52(1):500-504.
KIM H S, KIM J H, KIM J. A review of piezoelectric energy harvesting based on vibration [J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(6): 1129-1141.
袁江波, 谢涛, 单小彪, 等.复合型悬臂梁压电振子振动模型及发电试验研究[J].机械工程学报, 2010, 46(9): 87-92.
YUAN J B, XIE T, SHAN X B, et al..Vibrated model and experiments of multiple piezoelectric cantilevers in energy harvesting [J]. Journal of Mechanical Engineering, 2010, 46(9):87-92.
RATHINAMALA S, MANOHARAN S. Vibration powered generators and power processing circuits for energy harvesting: A survey [J]. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2014, 3(5):9597-9564.
CUI Y, ZHANG Q, YAO M, et al..Vibration piezoelectric energy harvester with multi-beam[J].Aip. Advances, 2015, 5(4):4495-4498.
PARK J C, KHYM S, PARK J Y.Micro-fabricated lead zirconate titanate bent cantilever energy harvester with multi-dimensional operation[J].Applied Physics Letters, 2013, 102(4):731-775.
SUE C Y, TSAI N C. Human powered MEMS-based energy harvest devices [J]. Applied Energy, 2012, 93(SI):390-403.
PILLATSCH P, YEATMAN E M, HOLMES A S. Real world testing of a piezoelectric rotational energy harvester for human motion [C].13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications(Powerments 2013), 2013.
闫世伟, 杨志刚, 罗洪波, 等. TPMS用压电发电装置研究[J].压电与声光, 2010, 32(5): 774-777.
YAN SH W, YANG ZH G, LUO H B, et al.. Research on piezoelectric generator device for TPMS[J].Piezoelectrics & Acoustooptics, 2010, 32(5):774-777.
HSU J C, TSENG C T, CHEN Y S. Analysis and experiment of self-frequency-tuning piezoelectric energy harvesters for rotational motion [J]. Smart Materials and Structures, 2014, 23(7): 075013.
LUONG H T, GOO N S. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill [J]. Smart Materials and Structures, 2012, 21(2): 025017.
KARAMI M A, FARMER J R, INMAN D J. Parametrically excited nonlinear piezoelectric compact wind turbine [J]. Renewable Energy, 2013, 50: 977-987.
YANG Y, SHEN Q, JIN J, et al.. Rotational piezoelectric wind energy harvesting using impact-induced resonance [J]. Applied Physics Letters, 2014, 105(5): 053901.
张永良, 林政.海洋波浪压电发电装置的进展[J].水力发电学报, 2011, 30(5):145-148.
ZHANG Y L, LIN ZH. Advances in ocean wave energy converters using piezoelectric materials [J]. Journal of Hydroelectric Engineering, 2011, 30(5): 145-148.
XIAO Q, ZHU Q. A review on flow energy harvesters based on flapping foils [J]. Journal of Fluids and Structures, 2014, 46: 174-191.
MUTSUDA H, WATANABE R, HIRATA M, et al..Elastic floating unit with piezoelectric device for harvesting ocean wave energy [C].ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, 2012: 233-240.
XIE X D, WANG Q, WU N. Energy harvesting from transverse ocean waves by a piezoelectric plate [J]. International Journal of Engineering Science, 2014, 81: 41-48.
WEI X, LIU J. Power sources and electrical recharging strategies for implantable medical devices [J]. Frontiers of Energy and Power Engineering in China, 2008, 2(1): 1-13.
FARINHOLT K, BROWN N, SIEGEL J, et al.. Energy harvesting to power embedded condition monitoring hardware [C].SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2015:94330W-7.
赵兴强. 基于颤振机理的微型压电风致振动能量收集器基础理论与关键技术[D]. 重庆: 重庆大学, 2013.
ZHAO X Q.Basic theory and key technologies of micropiezoelectric wind-induced-vibration energy harvester based on flutter [D].Chongqing:Chongqing University, 2013.
WANG S J, YUAN P, LI D, et al..An overview of ocean renewable energy in China [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1):91-111.
丁文镜.自激振动[M].北京:清华大学出版社, 2009.
DING W J. Self-Excited Oscillation [M].Beijing:Tsinghua University Press, 2009.
ABDELKEFI A, YAN Z, HAJJ M R. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping[J]. Smart Materials and Structures, 2013, 22(2): 025016.
MICHELIN S, DOARE O. Energy harvesting efficiency of piezoelectric flags in axial flows[J]. Journal of Fluid Mechanics, 2013, 714: 489-504.
WANG C K, LU D C. Division of marine resources in coastal rural area of China. Beijing [J]. State Oceanic Administration, Ministry of Resources and Electric Power; 1989.
王军雷. 基于流机电多物理场耦合下涡激振动能量收集模型及特性[D]. 重庆: 重庆大学, 2014.
WANG J L.Modeling and characteristics of the vortex-induced vibration pizeoelectric energy harvesting based on the aero-electro mechanical multi-physics field coupling [D]. Chongqing:Chongqing University, 2014.
CHEN X R, YANG T Q, WANG W, et al.. Vibration energy harvesting with a clamped piezoelectric circular diaphragm [J].Ceramics International, 2012, 38(S1):S271-S274.
HOBBS W B, HU D L. Tree-inspired piezoelectric energy harvesting [J]. Journal of Fluids andStructures, 2012, 28:103-114.
TAHERZADEH D, PICIOREANU C, KUTTLER U, et al..Computational study of the drag and oscillatory movement of biofilm streamers in fast flows [J]. Biotechnology and Bioengineering, 2010, 105(3):600-610.
RAGHAVAN K, BERNITSAS M M. Experimental investigation of reynolds number effect onvortex induced vibration of rigid circular cylinder on elastic supports [J]. Ocean Engineering, 2011, 38(5-6): 719-731.
ALLEN J J, SMITS A J, Energy harvesting eel. [J]. Journal of Fluids and Structures, 2001, 15(3-4):629-640.
TAYLOR G W, BURNS J R, KAMMANN S A, et al.. The energy harvesting eel: a small subsurface ocean/river power generator [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 539-547.
ROBBINS W P, MARUSIC I, MORRIS D. Wind-generated electrical energy using flexible piezoelectric materials[C]. International Mechanical Engineering Congress and Exposition, Chicago, United States, 2006: 1-9.
AKAYDIN HD, ELVINN, ANDREOPOULOS Y. Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials[J]. Experiments in Fluids, 2010, 49(1): 291-304.
POBERING S, EBERMEYER S, SCHWESINGER N. Generation of electrical energy using short piezoelectric cantilevers in flowing media [C].SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2009:728807-8.
WEINSTEIN L A, CACAN M R, SO P M, et al.. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows [J]. Smart Materials and Structures, 2012, 21(4): 045003.
HWANG J Y, YANG K S, SUN S H. Reduction of flow-induced forces on a circular cylinder using a detached splitter plate [J]. Physics of Fluids (1994-present), 2003, 15(8): 2433-2436.
DEHKORDI B G, JAFARI H H. On the suppression of vortex shedding from circular cylinders using detached short splitter-plates [J]. Journal of Fluids Engineering, 2010, 132(4): 044501.
NGUYEN H D T, PHAM H T, WANG D A. A miniature pneumatic energy generator using Kármán vortex street [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116: 40-48.
LI S, YUAN J P, LIPSON H. Ambient wind energy harvesting using cross-flow fluttering [J]. Journal of Applied Physics, 2011, 109(2):026104-3.
PEREZ M, BOISSEAU S, GASNIER P, et al.. An electret-based aeroelastic flutter energy harvester [J]. Smart Materials & Structures, 2015, 24(3):035004.
BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al.. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A new concept in generation of clean and renewable energy from fluid flow [J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4): 041101.
BERNITSAS M M, RAGHAVAN K. Fluid motion energy converter, US:7493759[P]. 2009.
LOBO V, MAINSAH N, BANERJEE A, et al..Design feasibility of a vortex induced vibration based hydro-kinetic energy harvesting system [C].2011 IEEE Green Technologies Conference (IEEE-Green), IEEE, 2011: 1-6.
HOBBS W B. Piezoelectric energy harvesting: vortex induced vibrations in plants, soap films, and arrays of cylinders [J]. Georgia Institute of Technology, 2010.
AKAYDIN H D, ELVIN N, ANDREOPOULOS Y. The performance of a self-excited fluidic energy harvester [J]. Smart Materials and Structures, 2012, 21(2): 025007.
DAI H L, ABDELKEFI A, YANG Y, et al.. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations [J]. Applied Physics Letters, 2016, 108(5): 053902.
SONG R, SHAN X, LV F, et al.. A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water [J]. Applied Sciences, 2015, 5(4): 1942-1954.
SONG R, SHAN X, LV F, et al.. A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension [J]. Ceramics International, 2015, 41: S768-S773.
GROUTHIER C, MICHELIN S, MODARRES-SADEGHI Y, et al.. Energy harvesting using vortex-induced vibrations of a hanging cable[C].ASME 2014 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2014: V004T04A015.
HU J C, CHA Y, PORFIRI M, et al.. Energy harvesting from a vortex ring impinging on an annular ionic polymer metal composite [J]. Smart Materials and Structures, 2014, 23(7): 074014.
SABER K. Energy from slow-moving rivers and ocean currents could power the entire world[EB]. http://www.altdotenergy.com/2008/12/energy-from-slow-moving-rivers-and-ocean-currents-could-power-the-entire-world/ http://www.altdotenergy.com/2008/12/energy-from-slow-moving-rivers-and-ocean-currents-could-power-the-entire-world/ , 2008-12-3.
丁林. 被动湍流控制下多柱体流致振动研究[D]. 重庆: 重庆大学, 2013.
DING L. Research on flow induced motion ofmultiple circular cylinders with passive turbulence control [D]. Chongqing:Chongqing University, 2013.
杨立红. 低雷诺数下串列多圆柱流致振动的数值模拟及其机理研究[D]. 天津: 天津大学, 2014.
YANG L H. Numerical investigation on flow-induced vibrations of multiple circular cylinders intandem arrangement at a low Reynolds number [D].Tianjin: Tianjin University, 2014.
WEI R, SEKINE A, SHIMURA M. Numerical analysis of 2d vortex-induced oscillations of a circular cylinder [J]. International Journal for Numerical Methods in Fluids, 1995, 21(10):993-1005.
JADIC I, SO RMC, MIGNOLET M P. Analysis of fluid-structure inter actions using a time-marching technique [J]. Journal of Fluids and Structures, 1998, 12(6):631-654.
ZHOU C Y, SO R M C, LAM K. Vortex-induced vibrations of an elastic circular cylinder [J]. Journal of Fluids and Structures, 1999, 13(2):165-189.
WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations [J]. Annual Review of Fluid Mechanics, 2004, 36:413-455.
ZHU M, LEIGHTON G. Dimensional reduction study of piezoelectric ceramics constitutive equations from 3-D to 2-D and 1-D [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(11): 2377-2383.
ABDELKEFI A, NUHAIT A O. Modeling and performance analysis of cambered wing-based piezoaero elastic energy harvesters [J]. Smart Materials and Structures, 2013, 22(9): 095029.
王军雷, 冉景煜, 张智恩, 等.外界载荷对圆柱涡激振动能量转换的影响[J].浙江大学学报(工学版), 2015, 49(6):1093-1100.
WANG J L, RAN J Y, ZHANG ZH E, et al..Effects of external load on energy conversion of vortex-induced vibrating cylinder[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6): 1093-1100.
0
浏览量
146
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构