浏览全部资源
扫码关注微信
1.军械工程学院 电子与光学工程系, 河北 石家庄 050003
2.清华大学 精密仪器系, 北京 100084
[ "史云胜(1987-), 男, 内蒙古通辽人, 博士研究生, 2010年于清华大学获得学士学位, 2013年于军械工程学院获得硕士学位, 现为军械工程学院博士研究生, 主要从事光谱检测及微纳器件研究。E-mail:shiysthu@126.com" ]
杨兴(1974-), 男, 辽宁鞍山人, 副研究员, 1998年于哈尔滨工业大学获得硕士学位, 2001年于大连理工大学获得博士学位, 现为清华大学精密仪器系副研究员, 主要从事微/纳传感器与执行器、微流体器件、精密测试等方面研究。E-mail:yangxing@tsinghua.edu.cn YANG Xing, E-mail: yangxing@tsinghua.edu.cn
收稿日期:2016-10-10,
录用日期:2017-1-16,
纸质出版日期:2017-06-25
移动端阅览
史云胜, 刘秉琦, 杨兴. 超润滑石墨表面的光谱表征研究[J]. 光学 精密工程, 2017,25(6):1513-1518.
Yun-sheng SHI, Bing-qi LIU, Xing YANG. Research on spectral characterization of superlubricity graphite surface[J]. Optics and precision engineering, 2017, 25(6): 1513-1518.
史云胜, 刘秉琦, 杨兴. 超润滑石墨表面的光谱表征研究[J]. 光学 精密工程, 2017,25(6):1513-1518. DOI: 10.3788/OPE.20172506.1513.
Yun-sheng SHI, Bing-qi LIU, Xing YANG. Research on spectral characterization of superlubricity graphite surface[J]. Optics and precision engineering, 2017, 25(6): 1513-1518. DOI: 10.3788/OPE.20172506.1513.
为探寻解决微/纳机电系统中摩擦和磨损等界面效应问题的理想新方法,研究了石墨接触界面对石墨超润滑的影响及阻力来源。首先,利用电子束曝光、反应离子束刻蚀等微加工方法制备了微米级石墨平台,并使用微纳机械手推动石墨平台获得了具有超润滑特性的石墨表面。然后使用拉曼光谱、纳米级红外光谱和原子力显微镜对获得的超润滑石墨表面进行表征。最后使用了能谱仪对石墨平台进行了微区元素分析。结果表明,超润滑石墨表面具有原子级光滑的平整度,并具有极高的有序度,而石墨表面的边缘具有多种缺陷并在加工过程中及大气环境中吸附了多种分子,边缘的氧原子含量比面内氧原子含量高出了24.2%。推动石墨平台的过程中,边缘吸附分子会阻碍超润滑石墨接触界面发生相对滑动,克服这些分子的吸附需要能量,这成为摩擦阻力的来源。
In order to seek for a new ideal method to solve friction
abrasion and other interfacial effect problems in micro/nano electro mechanical system
the influence of graphite contact interfaces on graphite superlubricity and the sources of resistance were researched. First
the electron beam lithography
ion beam etching and other micro-processing methods were used to prepare microscale graphite mesa
and graphite surface with superlubricity was obtained by using micro-nano manipulator to shear the graphite mesa. Then
the Raman spectrum
nanoscale infrared spectrum and atomic force microscope were used to characterize the surface of the obtained superlubricity graphite. Finally
energy dispersive spectrometer was taken to analyze micro-area elements in graphite platform. The result shows that the surface of superlubricity graphite has atomically smooth flatness and has high order degree
but there are multiple defects on the edge of the graphite surface; and multiple molecules are absorbed on the surface of the graphite in the process of machining and in the atmospheric environment. The content of marginal oxygen atom is 24.2% higher than the content of in-plane oxygen atom. In the process of pushing graphite platform
the marginally absorbed molecule will hinder the relative sliding of contact interface of superlubricity graphite. Moreover
energy is needed to overcome the absorption of these molecules
which becomes the source of frictional resistance.
ERDEMIR A, MARTIN J M. Superlubricity [M]. Amsterdam: Elsevier Science, 2007: 253.
EWEN J P, GATTINONI C, THAKKAR F M, et al.. Nonequilibrium molecular dynamics investigation of the reduction in friction and wear by carbon nanoparticles between iron surfaces [J]. Tribology Letters, 2016, 63(3): 38.
YAN H X, LI S, JIA Y, et al.. Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites [J]. RSC Advances, 2015, 5(17): 12578-12582.
HIRANO M, SHINJO K. Atomistic locking and friction [J]. Physical Review B, 1990, (41): 11837.
SHARP T A, PASTEWKA L, ROBBINS M O. Elasticity limits structural superlubricity in large contacts [J]. Physical Review B, 2016, 93(12): 121402.
van WIJK M M, de WIJN A S, FASOLINO A. Collective superlubricity of graphene flakes [J]. Journal of Physics: Condensed Matter, 2016, 28(13): 134007.
KOREN E, DUERIG U. Superlubricity in quasicrystalline twisted bilayer graphene [J]. Physical Review B, 2016, 93(20): 201404.
DIENWIEBEL M, VERHOEVEN G S, PRADEEP N, et al.. Superlubricity of graphite [J]. Phys. Rev. Lett. 2004, (92): 126101.
DIETZEL D, RITTER C, MÖNNINGHOFF T, et al.. Frictional duality observed during nanoparticle sliding [J]. Phys. Rev. Lett., 2008, 101(12): 125505.
LEE C, LI Q Y, KALB W, et al.. Frictional characteristics of atomically thin sheets [J]. Science. 2010, 328(5974): 76-80.
KOREN E, LÖRTSCHER E, RAWLINGS C, et al.. Adhesion and friction in mesoscopic graphite contacts [J]. Science, 2015, 348(6235): 679-683.
LIU Z, YANG J R, GREY F, et al.. Observation of microscale superlubricity in graphite [J]. Phys. Rev. Lett., 2012, 108(20):205503.
LIU Z, ZHANG S M, YANG J R, et al.. Interlayer shear strength of single crystalline graphite [J]. Acta Mechanica Sinica, 2012, 28(4):978-982.
YANG J R, LIU Z, GREY F, et al.. Observation of high-speed microscale superlubricity in graphite [J]. Phys. Rev. Lett, 2013, 110(25): 255504.
WANG W, DAI S Y, LI X D, et al.. Measurement of the cleavage energy of graphite [J]. Nature Communications, 2015, 6:7853.
DIETZEL D, FELDMANN M, SCHWARZ U, et al.. Scaling laws of structural lubricity [J]. Phy. Rev. Lett., 2013, 111(23): 235502.
VARINI N, VANOSSI A, GUERRA R, et al.. Static friction scaling of physisorbed islands: the key is in the edge [J]. Nanoscale, 2015, 7(5): 2093-2101.
VERZHBITSKIY I A, CORATO M D, RUINI A, et al.. Raman fingerprints of atomically precise graphene nanoribbons [J]. Nano letters, 2016, 16(6): 3442-3447.
0
浏览量
105
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构