浏览全部资源
扫码关注微信
长春理工大学机电工程学院, 吉林 长春 130022
[ "李俊烨(1981-), 男, 吉林农安人, 副教授, 博士, 主要研究方向为精密加工、微摩擦及多相流技术。E-mail:ljy@cust.edu.cn" ]
[ "胡敬磊(1990-), 男, 山东菏泽人, 硕士研究生, 主要研究方向为微摩擦及多相流技术。E-mail:1340113539@qq.com" ]
[ "董坤(1989-), 男, 山东青岛人, 硕士研究生, 主要研究方向为微摩擦及多相流技术。E-mail:dongkun0908@163.com" ]
张心明, E-mail: zxm@cust.edu.cn ZHANG Xin-ming, E-mail: zxm@cust.edu.cn
收稿日期:2016-09-28,
录用日期:2016-11-14,
纸质出版日期:2017-06-25
移动端阅览
李俊烨, 胡敬磊, 董坤, 等. 固液两相磨粒流研抛工艺优化及质量影响[J]. 光学 精密工程, 2017,25(6):1534-1546.
Jun-ye LI, Jing-lei HU, Kun DONG, et al. Technological parameter optimization and quality effects on solid-liquid phase abrasive flow polishing[J]. Optics and precision engineering, 2017, 25(6): 1534-1546.
李俊烨, 胡敬磊, 董坤, 等. 固液两相磨粒流研抛工艺优化及质量影响[J]. 光学 精密工程, 2017,25(6):1534-1546. DOI: 10.3788/OPE.20172506.1534.
Jun-ye LI, Jing-lei HU, Kun DONG, et al. Technological parameter optimization and quality effects on solid-liquid phase abrasive flow polishing[J]. Optics and precision engineering, 2017, 25(6): 1534-1546. DOI: 10.3788/OPE.20172506.1534.
为研究磨粒流对异形腔孔内壁表面以及微小孔的研抛去毛刺等的作用效果,探讨了研抛过程中磨粒流各工艺参数与加工质量间的作用关系。以共轨管这种非直线管为研究对象,对磨粒流抛光共轨管过程进行数值模拟研究,探索各工艺参数对磨粒流研抛的影响。数值模拟结果表明:控制碳化硅体积分数可以改变磨粒流研抛过程中的粘温特性,从而可以控制磨粒流的研抛质量。然后采用正交方法设计实验方案,实验过程中,采集抛光过程中温度和粘度的变化数据,分析磨粒流研抛中粘温特性对磨粒流研抛质量的影响。试验与数值模拟结果表明,在磨粒流研抛共轨管过程中SiC的体积分数比出口压力的极差秩大,磨粒流研抛确实可有效改善工件表面质量。而且本文还进一步得出在本试验条件下,磨粒流研抛共轨管的最佳工艺参数:出口压力为5 MPa,SiC体积分数为0.25%,SiC目数为80,同时获得了表面粗糙度与体积分数的回归方程,可用于指导磨粒流实际研抛生产工作。
To study the effect of abrasive flow polishing on internal surface of heteromorphic coelomopore and polishing deburring of micro-holes
the function relationship between each technological parameter of abrasive flow and processing quality in the process of polishing was discussed. Common rail pipe that is a type of non-straight pipe was taken as research object
and numerical simulation study was implemented for abrasive flow polishing process
the influence of each technological parameter on abrasive flow polishing was explored. Numerical simulation results show that: the viscosity-temperature characteristics in the process of abrasive flow polishing can be changed by controlling volume fraction of SiC
thus the control of quality for abrasive flow polishing can be realized. Then orthogonal method was adopted to design experiment scheme. Changed data of temperature and viscosity in polishing process was collected and influence of viscosity-temperature characteristics on quality of abrasive flow polishing was analyzed. The experimental and numerical simulation results show that the range rank of SiC volume fraction is higher than that of exit pressure in the process of abrasive flow polishing. What's more significant is the quality of work-piece surface can be effectively improved by abrasive flow polishing. Under the condition of the experiment
the exit pressure of the optimum technology parameter for common rail tube of abrasive flow polishing is 5 MPa; the volume fraction of SiC is 0.25%; the mesh number of SiC is 80; the regression equation of surface roughness and volume fraction can be obtained at the same time
which can be applied to guide production of practical polishing for abrasive flow.
李俊烨, 许颖, 杨立峰, 等.非直线管零件的磨粒流加工实验研究[J].中国机械工程, 2014, 25(13): 1729-1734.
LI J Y, XU Y, YANG L F, et al.. Analysis of non-linear tube abrasive flow machining experiments[J]. China Mechanical Engineering, 2014, 25(13): 1729-1734.(in Chinese)
LI J Y, LIU W N, YANG L F, et al.. Study of abrasive flow machining parameter optimization based on taguchi method[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2949-2954.
JAIN R K, JAIN V K. Optimum selection of machining conditions in abrasive flow machining using neural network[J]. Journal of Materials Processing Technology, 2000, 108(1): 62-67.
RAJENDRA K J, VIJAY K J. Stochastic simulation of active gra in density in abrasive flow machining[J]. Journal of Materials Processing Technology, 2004, 152: 17-22.
SUNIL J, VIJAY K.J. Design and development of the magnet or heological abrasive flow finishing (MRAFF) process [J].International Journal of Machine Tools and Manufacture, 2004, 44:1019-1029.
SUNIL J, VIJAY K.J. Modeling and simulation of surface roughness in magnet or heological abrasive flow finishing (MRAFF) process[J]. Wear, 2006, 261: 856-866.
SUSHIL M, VINOD K, HARMESH K. Experimental investigation and optimization of process parameters of Al/SiC MMCs finished by abrasive flow machining[J]. Materials and Manufacturing Processes, 2015, 30(7): 902-911.
VENKATESH G, SHARMA A K, SINGH N, et al.. Finishing of bevel gears using abrasive flow machining[J]. Procedia Engineering, 2014, 97: 320-328.
VENKATESH G, SHARMA A K, KUMAR P. On ultrasonic assisted abrasive flow finishing of bevel gears[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 29-38.
SHARMA A K, VENKATESH G, RAJESHA S, et al.. Experimental investigations into ultrasonic-assisted abrasive flow machining (UAAFM) process[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(1-4): 477-493.
BREMERSTEI T, POTTHOFF A, MICHAELIS A, et al.. Wear of abrasive media and its effect on abrasive flow machining results[J]. Wear, 2015, 342:44-51.
KLOCKE F, SOO S L, KARPUSCHEWSKI B, et al.. Abrasive machining of advanced aerospace alloys and composites[J]. CIRP Annals-Manufacturing Technology, 2015, 64(2): 581-604.
BRAR B S, WALIA R S, SINGH V P. Electrochemical-aided abrasive flow machining (ECA2FM) process: a hybrid machining process[J].International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 329-342.
计时鸣, 黄希欢, 谭大鹏, 等.气-液-固三相磨粒流光整加工及其工艺参数优化[J].光学 精密工程, 2016, 24(4): 855-864.
JI SH M, HUANG X H, TAN D P, et al.. Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Opt. Precision Eng., 2016, 24(4): 855-864.(in Chinese)
计时鸣, 马宝丽, 谭大鹏.结构化表面环境下软磨粒流的流场数值分析[J].光学 精密工程, 2011, 19(9):2092-2099.
JI SH M, MA B L, TAN D P. Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Opt. Precision Eng., 2011, 19(9):2092-2099.(in Chinese)
丁金福, 刘润之, 张克华, 等.磨粒流精密光整加工的微切削机理[J].光学 精密工程, 2014, 22(12): 3324-3331.
DING J F, LIU R ZH, ZHANG K H, et al..Micro cutting mechanism of abrasive flow precision machining[J]. Opt. Precision Eng., 2014, 22(12)3324-3331.(in Chinese)
李琛, 计时鸣, 谭大鹏, 等.软性磨粒流加工特性及近壁区域微切削机理[J].机械工程学报, 2014, 50(9):161-168.
LI CH, JI SH M, TAN D P, et al..Study of near wall area micro-cutting mechanism and finishing characteristics for softness abrasive flow finishing[J]. Journal of Mechanical Engineering, 2014, 50(9):161-168.(in Chinese)
SUH N P, SAKA N. Fundamentals of Tribology[M]. The MIT Press, 1978.
0
浏览量
108
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构