浏览全部资源
扫码关注微信
1.韶关学院物理与机电工程学院, 广东 韶关 512005
2.华南理工大学机械与汽车工程学院, 广东 广州 510640
3.湖南科技大学 先进矿山装备教育部工程研究中心, 湖南 湘潭 411201
吴伟辉(1979-), 男, 广东化州人, 博士, 副教授, 博士后(已出站)。2001年、2004年于中南大学分别获得学士、硕士学位, 2007年于华南理工大学获得博士学位, 现为韶关学院物理与机电工程学院教师, 主要从事激光材料合成及成型方面的研究。E-mail:wuweihui_068@163.com WU Wei-hui, E-mail:wuweihui_068@163.com
[ "杨永强(1961-), 男, 河北定州人, 教授, 博士师导师, 1982年、1987年、1993年于天津大学分别获得学士、硕士、博士学位, 主要从事激光加工、快速原型以及金属材料等方面的研究。E-mail:meyqyang@scut.edu.cn" ]
收稿日期:2016-11-02,
录用日期:2017-3-9,
纸质出版日期:2017-06-25
移动端阅览
吴伟辉, 杨永强, 肖冬明, 等. 激光选区熔化成型可控超轻结构化零件的孔隙生成效果[J]. 光学 精密工程, 2017,25(6):1547-1556.
Wei-hui WU, Yong-qiang YANG, Dong-ming XIAO, et al. Pore forming results of controllable ultra-light structured parts by selective laser melting[J]. Optics and precision engineering, 2017, 25(6): 1547-1556.
吴伟辉, 杨永强, 肖冬明, 等. 激光选区熔化成型可控超轻结构化零件的孔隙生成效果[J]. 光学 精密工程, 2017,25(6):1547-1556. DOI: 10.3788/OPE.20172506.1547.
Wei-hui WU, Yong-qiang YANG, Dong-ming XIAO, et al. Pore forming results of controllable ultra-light structured parts by selective laser melting[J]. Optics and precision engineering, 2017, 25(6): 1547-1556. DOI: 10.3788/OPE.20172506.1547.
本文主要研究了孔隙率等参数可控的自动超轻结构化金属零件的增材制造。以方块零件及一个具有复杂外形的零件为研究对象,分析了面向激光选区熔化工艺的可控超轻结构化零件的孔隙生成效果,重点探讨了成型工艺对超轻结构化零件孔隙率的影响。结果显示:通过计算机数值计算,可将方块CAD模型快速自动转化为可控超轻结构化模型,计算孔隙率误差可控制在±2%以内;激光深穿透现象会导致带悬垂面内壁的壁厚增加,所引起的孔隙率误差值为负值,且计算孔隙率越大,负值倾向越严重;而成型工艺性不致密导致的孔隙率误差为正值,且在相同工艺条件下,计算孔隙率越大,该误差值越小。故为使总孔隙率误差能较好地反映超轻结构网格孔隙的控制精度,应提高成型时实体部分的致密性。按45%设定孔隙率成功地将具有复杂结构的零件转化为计算孔隙率为44.62%的超轻结构化模型,采用高致密性激光选区熔化工艺成型后,实测孔隙率为42.94%,无悬垂面的内壁壁厚误差≤0.06 mm,达到了较好的超轻结构控制效果。
In this paper
the addictive manufacturing of automatic ultra-light structural metal parts with controllable parameters
such as porosity
was researched. Through block shaped parts and a part with complicated structure
the pore forming results of controllable ultra-light structural parts manufactured by selective laser melting was analyzed. Influences of forming technology on porosity of ultra-light structural parts were mainly discussed. The result is showed: through numerical calculation of computer
block shaped CAD model can be rapidly and automatically transformed into a controllable ultra-light structural model. Moreover
the calculation porosity error is controlled within ±2%. The experiment also shows that laser deep penetration phenomena may lead to the increase of inner wall thickness for the dangling surface
causing the negative value for the porosity error. Furthermore
the larger the calculation porosity is
the worse the negative value is. On the other hand
non-compactness of forming process may induce positive porosity error. Under the same technological condition
the larger the calculation porosity is
the smaller the error value of porosity is. In order to make the total error value of porosity can better reflect the control accuracy of the ultra-light structured pore
the density of material part of the object should be improved at the time of forming. Parts with complex structure have been successfully transformed into ultra-light structured model with 44.62% of calculation porosity according to 45% set porosity. Hgh-density selective laser melting technology is used in this paper with 42.94% of the actual measurement porosity and ≤0.06 mm of inner wall thickness error for the surface without dangling surface
which realizes a better ultra-light structured control effect.
阎军. 超轻金属结构与材料性能多尺度分析与协同优化设计[D]. 大连: 大连理工大学, 2007: 1-5.
YAN J. Multiscale analysis and concurrent optimization for ultra-light metal structures and materials[D].Dalian: Dalian University of Technology, 2007:1-5.
李涤尘, 贺健康, 田小永, 等.增材制造:实现宏微结构一体化制造[J].机械工程学报, 2013, 49(6):129-135.
LI D CH, HE J K, TIAN X Y, et al..Additive manufacturing: integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6):129-135.
杨永强, 吴伟辉.制造改变设计-增材制造直接制造技术[M].北京:中国科学技术出版社, 2014:20-21.
YANG Y Q, WU W H. Manufacturing Changes Design-3D Printing Direct Manufacturing Technology[M].Beijing: China Science and Technology Press, 2014:20-21.
VAN B S, KERCKHOFS G, MOESEN M, et al.. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6A14V porous structures[J].Materials Science and Engineering A, 2011, 528(24):7423-7431.
MARKUS L, SIMON H, WILHELM M.Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique[J].Journal of Biomedical Materials Research Part A, 2011, 97A(4):466-471.
YAN CH Z, LIANG H, AHMED H, et al..Evaluations of cellular lattice structures manufactured using selective laser melting[J]. International Journal of Machine Tools & Manufacture, 2012, 62:32-38.
WANG D, YANG Y Q, RUICHENG L, et al.. Study on the designing rules and processability of porous structure based on selective laser melting (SLM)[J]. Journal of Materials Processing Technology, 2013, 213(10):1734-1742.
叶琦, 石新莹, 曹姗姗, 等.多孔钛孔隙率和孔隙尺寸对其力学性能及细胞相容性的影响[J].口腔材料器械杂志.2013, 22(1):7-21.
YE Q, SHI X Y, CAO SH SH, et al..Influence of porosity and pore size on mechanical properties and cytocompatibility of porous titanium [J]. Chinese Journal of Dental Materials and Devices, 2013, 22(1):7-21.
YAVARI S A, AHMADI SM, WAUTHLE R, et al..Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43:91-100.
ALSALLA H, HAO L, SMITH C. Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique [J]. Materials Science & Engineering A, 2016, 669:1-6.
MAHSHID R, HANSEN H N, HØJBJERRE K L. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications[J]. Materials & Design, 2016, 104:276-283.
曾涛, 董显林, 毛朝梁, 等.孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究[J].物理学报, 2006, 55(6):3073-3079.
ZENG T, DONG X L, MAO CH L, et al..Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism [J].Acta Physica Sinica, 2006, 55(6):3073-3079.
刘汉强, 赵鹏, 浦玉萍.孔密度和孔隙率对泡沫铜换热性能的影响[J].粉冶金工业, 2015, 25(2):46-51.
LIU H Q, ZHAO P, PU Y P, et al..Influence of pore density and porosity on heat transfer performance of copper foam[J]. Powder Metallurgy Industry, 2015, 25(2):46-51.
STRATASYS.FDM for end-use parts: tips and techniques for optimization[EB]. http://www.techforever.com/userfiles/image/anli/PDF/SYSS-TAG-EndUseParts-04-11.pdf http://www.techforever.com/userfiles/image/anli/PDF/SYSS-TAG-EndUseParts-04-11.pdf [2013-8-25].
肖冬明. 面向植入体的多孔结构建模及激光选区熔化直接制造研究[D]. 广州: 华南理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10561-1014153362.htm
XIAO D M.Moldeling of porous structure of implants and direct manufacturing by selective laser melting[D].Guangzhou:South China University of Technology, 2013.
刘睿诚. 激光选区熔化成型零件表面粗糙度研究及在免组装机构中的应用[D]. 广州: 华南理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10561-1014063401.htm
LIU R CH.The study on surface roughness of metal parts fabricated by selective laser melting and the application on Non-assembly Mechanisms[D].Guangzhou:South China University of Technology, 2014.
许瑞华, 黎向锋, 左敦稳, 等.扫描速度对钛合金NiCoCrAlY熔覆涂层显微组织及硬度的影响[J].稀有金属, 2014, 38(5): 807.
XU R H, LI X F, ZUO D W, et al.. Microstructure and hardness of NiCoCrAlY coatings on titanium alloy by laser cladding with different scanning speeds [J]. Chinese Journal of Rare Metals, 2014, 38(5): 807.(in Chinese)
李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉: 华中科技大学, 2010.
LI R D. Research on the key basic issues in selective laser melting of metallic powder [D]. Wuhan: Huazhong University of Science and Technology, 2010.(in Chinese)
吴伟辉, 肖冬明, 毛星.金属零件自动超轻结构化设计及激光增材制造[J].红外与激光工程, 2016, 45(11):124-131.
WU W H, XIAO D M, MAO X. Automatic design and laser additive manufacturing of super-light structure of metal part[J]. Infrared and Laser Engineering, 2016, 45(11):124-131.
0
浏览量
120
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构