浏览全部资源
扫码关注微信
1.哈尔滨工业大学 自动化测试及控制系, 黑龙江 哈尔滨 150000
2.哈尔滨学院 工学院, 黑龙江 哈尔滨 150000
3.黑龙江大学 电子工程学院, 黑龙江 哈尔滨 150081
[ "韩玉兰(1984-), 女, 黑龙江大庆人, 博士研究生, 2007年于黑龙江大学获得学士学位, 2010年于黑龙江大学获得硕士学位, 主要从事机器视觉及图像恢复的研究。E-mail:hanyulanbox@126.com" ]
赵永平(1964-), 男, 黑龙江哈尔滨人, 博士, 教授, 博士生导师, 1985年、1988年、2004年于哈尔滨工业大学分别获得学士、硕士、博士学位, 主要从事信号检测和图像处理的研究。E-mail:zhaoyp2590@hit.edu.cn ZHAO Yong-ping, E-mail:zhaoyp2590@hit.edu.cn
收稿日期:2016-07-18,
录用日期:2016-9-12,
纸质出版日期:2017-06-25
移动端阅览
韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程, 2017,25(6):1619-1626.
Yu-lan HAN, Yong-ping ZHAO, Qi-song WANG, et al. Reconstruction of super resolution for noise image under the sparse representation[J]. Optics and precision engineering, 2017, 25(6): 1619-1626.
韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程, 2017,25(6):1619-1626. DOI: 10.3788/OPE.20172506.1619.
Yu-lan HAN, Yong-ping ZHAO, Qi-song WANG, et al. Reconstruction of super resolution for noise image under the sparse representation[J]. Optics and precision engineering, 2017, 25(6): 1619-1626. DOI: 10.3788/OPE.20172506.1619.
为了能够完成噪声图像的超分辨率重构,提出了一种基于稀疏表示的噪声图像超分辨率重构方法,可以同时完成图像去噪和超分辨率重构。首先,对样本图像和低分辨率图像进行块划分,建立样本库。其次,建立图像退化模型,采用相似样本加权平均的方式对输出的高分辨率图像块进行表示。根据输入的低分辨率图像块,计算样本块与输出的高分辨率图像块之间的相似性。提出了一种相似性描述方法,能够很好地解决噪声带来的影响。然后,采用相似性对稀疏编码优化模型进行惩罚,提出一种权值求解模型。模型可以自适应的搜索相似样本块而不需要预先设定相似块的个数。最后,求解权值,根据权值和样本块重构高分辨率图像块,并重构高分辨率图像。实验结果表明:所提出的方法较其它常见超分辨率算法的峰值信噪比可提高0.5dB左右,重构的图像细节更丰富,去噪效果更好,更适合实际应用。
In order to complete the super-resolution reconstruction of noise images
a reconstruction method of noise images was introduced based on sparse representation
which could complete image de-noising and super resolution reconstruction simultaneously. Firstly
block size division was made for sample images and low-resolution images and the sample database was established. Secondly
the image degradation model was built and the way of weighted average was used for similar samples to represent the output image block with high resolution. Then
according to the input low-resolution image block
the similarity between sample block and output high-resolution image block was calculated. In addition
a similarity description method which could better reduce the influence bought by noises was proposed. Using the similarity to punish the sparse coding optimization models
a weight solving model was established. And the similar sample model could be self-adaptively searched by the model rather than being set the number of similar blocks in advance. Finally
the image block with high resolution as well as high-resolution images were reconstructed
according to the solved weight and input sample block. The result of experiment shows: compared with the other common super resolution algorithms
the peak signal to noise ratio of the mentioned method improves approximately 0.5 dB; and the reconstructed image with more details has better de-noise effect and is more suitable to practical use.
龚卫国, 潘飞宇, 李进明.用双重重建法实现单幅图像的超分辨率重建[J].光学 精密工程, 2014, 22(3): 720-729.
GONG W G, PAN F Y, LI J M. Image Single-image super-resolution reconstruction via double layer reconstruction [J]. Opt. Precision Eng., 2014, 22(3): 720-729.(in Chinese)
贾苏娟, 韩广良, 陈小林, 等.广度非均匀彩色序列图像超分辨率重建[J].液晶与显示, 2014, 29(1): 106-113.
JIA S J, HANG G L, CHEN X L, et al.. Super-resolution reconstruction with photometric change of color image sequence [J].Chinese Journal of Liquid Crystals and Displays, 2014, 29(1): 106-113. (in Chinese)
邓承志, 田伟, 汪胜前.近似稀疏正则化的红外图像超分辨率重建[J].光电精密工程, 2014, 22(6): 1648-1654.
DENG CH ZH, TIAN W, WANG S Q. Super-resolution reconstruction of approximate sparsity regularized infrared images[J].Opt. Precision Eng., 2014, 22(6): 1648-1654.(in Chinese)
张振东, 陈健, 王伟国, 等.基于SSIM_NCCDFT的超分辨率复原评价方法研究[J].液晶与显示, 2015, 30(4): 713-721.
ZHANG Z D, CHEN J, WANG W G, et al.. Evaluation method of super-resolution restoration based on SSIM_NCCDFT [J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(4): 713-721. (in Chinese)
DONG W SH, ZHANG L. Sparse Representation based Image Interpolation with Nonlocal Autoregressive modeling [J]. IEEE Trans. Image Process, 2013, 4(22):1382-1394.
FREEMAN W T, JONES T R, PASZTOR E C. Example-based super-resolution[J]. IEEE Comput. Graph, 2002, 22(2): 56-65.
朱福珍, 王晓飞, 丁群, 等.三级训练BP神经网络遥感图像超分辨率重建[J].光电精密工程, 2015, 23(10): 722-729.
ZHU F Z, WANG X F, DING Q, et al.. Super-resolution reconstruction of remote images based on three level training BP neural net work [J].Opt. Precision Eng., 2015, 23(10): 722-729.(in Chinese)
CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]. IEEE Conf. Comput. Vis. Pattern Recog., 2004: 275-282.
KARL S N, TRUONG Q. An adaptable K-nearest neighbors algorithm for MMSE image interpolation[J]. IEEE Trans. Image Process, 2009, 18(9): 1976-1987.
YANG J C, WRIGHT J, HUANG T S, et al..Image super-resolution via sparse representation[J]. IEEE Trans. Image Process, 2010, 19(11): 861-2873.
WANG S L, ZHANG L, LIANG Y, et al.. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch image synthesis[C]. CVPR, 2012: 2216-2223.
练秋生, 张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报, 2012, 40(5): 920-925.
LIAN Q SH, ZHANG W. Image super-resolution algorithms based on sparse representation of classified image patches[J]. Acta Electronic Sinica.2012, 40(5): 920-925.(in Chinese)
HUANG J B, ABHISHEK, NARENDRA. Single image super-resolution from transformed self-exemplars[C]. CVPR, 2015: 5197-5206.
0
浏览量
141
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构