浏览全部资源
扫码关注微信
华南理工大学 机械与汽车工程学院, 广东 广州 510640
[ "郭清达(1986-), 男, 山东聊城人, 博士研究生, 2009年于济南大学获得学士学位, 2012年于华南理工大学获得硕士学位, 主要从事机器视觉, 工业机器人等方面的研究。E-mail:meguoqingda@mail.scut.edu.cn" ]
全燕鸣(1957-), 女, 江西南城人, 博士, 教授, 博士生导师, 1982年于江西工学院获得学士学位, 1993年和1997年于华南理工大学分别获得硕士、博士学位, 主要从事机械制造及其自动化技术、制造过程中的检测技术、机器视觉应用研究。E-mail:meymquan@scut.edu.cn QUAN Yan-ming, E-mail:meymquan@scut.edu.cn
收稿日期:2016-10-17,
录用日期:2016-12-19,
纸质出版日期:2017-06-25
移动端阅览
郭清达, 全燕鸣, 姜长城, 等. 应用摄像机位姿估计的点云初始配准[J]. 光学 精密工程, 2017,25(6):1635-1644.
Qing-da GUO, Yan-ming QUAN, Chang-cheng JIANG, et al. Initial registration of point clouds using camera pose estimation[J]. Optics and precision engineering, 2017, 25(6): 1635-1644.
郭清达, 全燕鸣, 姜长城, 等. 应用摄像机位姿估计的点云初始配准[J]. 光学 精密工程, 2017,25(6):1635-1644. DOI: 10.3788/OPE.20172506.1635.
Qing-da GUO, Yan-ming QUAN, Chang-cheng JIANG, et al. Initial registration of point clouds using camera pose estimation[J]. Optics and precision engineering, 2017, 25(6): 1635-1644. DOI: 10.3788/OPE.20172506.1635.
基于摄像机位姿估计的数学模型,提出了一种检测摄像机位移前后目标图像特征点的方法,通过求解摄像机发生位移前后的相对位姿矩阵来解决应用视觉图像获得点云的初始配准问题。首先,介绍了摄像机位姿估计模型,包括本质矩阵、旋转矩阵以及平移矩阵;然后,介绍了SURF算子的特征点检测、描述和匹配的方法,在此基础上面向双目视觉和单目结构光系统,分别提出了摄像机位移前后目标图像SURF特征点匹配和深度估计模型;最后,分别进行双目视觉和单目结构光系统点云的获取、位移前后目标图像特征点检测匹配和深度估计实验,应用摄像机位姿估计模型求解旋转矩阵和位移矩阵,并对位移矩阵进行统计分析剔除粗差。实验中采用基于点云空间特征点和基于图像的方法进行对比,点云对应特征点均方误差缩小至12.46 mm。实验结果验证了方法的可行性,表明本文的点云初始配准方法能较好地获得点云精确配准初值。
Based on the mathematical model of camera pose estimation
a feature point detection method of camera images before and after movement was proposed to obtain relative posture matrix of camera before and after movement
which can solve initial registration problem of point clouds derived from machine vision. Firstly
the estimation model of camera pose was introduced
including essential matrix
rotation matrix and translation matrix. Secondly
the detection
description and matching of feature points for SURF operator were introduced. On this basis
SURF feature points matching of camera images before and after movement and depth estimation model were respectively proposed for binocular vision and monocular structured light system. Finally
the acquisition of point clouds derived from binocular vision and monocular structured
feature points detection and matching of camera images before and after movement as well as camera depth estimation were realized experimentally. The mathematical model of camera pose was estimated to solve the rotation matrix and the translation matrix
and the residual analysis was carried out on the translation matrix for eliminating gross errors. In the experiment
the method of initial registration of point cloud based on feature point and based on images as contrast
the results show that the mean square error of the corresponding feature points are reduced to 12.46 mm. The result verifies the feasibility of the method
and indicates that the point registration method can obtain good initial values for accurate point cloud registration.
吴禄慎, 史皓良, 陈华伟.基于特征信息分类的三维点数据去噪[J].光学 精密工程, 2016, 24(6): 1465-1473.
WU L S, SHI H L, CHEN H W. Denoising of three-dimensional point data based on classification of feature information[J]. Opt. Precision Eng., 2016, 24(6): 1465-1473. (in Chinese)
袁小翠, 吴禄慎, 陈华伟.特征保持点云数据精简[J].光学 精密工程, 2015, 23(9): 2666-2676.
YUAN X C, WU L S, CHEN H W. Feature preserving point cloud simplification [J]. Opt. Precision Eng., 2015, 23(9): 2666-2676. (in Chinese)
SALVI J, MATABOSCH C, FOFI D, et al.. A review of recent range image registration methods with accuracy evaluation [J]. Image and Vision Computing, 2007, 25(5): 578-596.
BESL P, MCKAY N. A method for registration of 3D shape [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
BIBER P, STRASSER W. The normal distributions transform: a new approach to laser scan matching[C]. IEEE/RJS International Conference on Intelligent Robots & Systems, 2003, 3(3):2743-2748.
李兴东, 李满天, 郭伟, 等. TOF激光相机六自由度位姿变换估计[J].红外与激光工程, 2015, 44(7): 2231-2238.
LI X D, LI M T, GUO W, et al.. Estimating 6 DOF pose transformation of a TOF laser camera [J]. Infrared and Laser Engineering, 2015, 44(7): 2231-2238. (in Chinese)
罗先波, 钟约先, 李仁举.三维扫描系统中的数据配准技术[J].清华大学学报, 2004, 44(8): 1104-1106.
LUO X B, ZHONG Y X, LI R J. Data registration in 3-D scanning systems [J]. J Tsinghua Univ (Sci & Tech), 2004, 44(8):1104-1106. (in Chinese)
戴静兰, 陈志杨, 叶修梓. ICP算法在点云配准中的应用[J].中国图象图形学报, 2007, 12(3): 517-521.
DAI J L, CHEN Z Y, YE X Z. The Application of ICP Algorithm in Point Cloud Alignment [J]. Journal of Image and Graphics, 2007, 12(3): 517-521. (in Chinese)
朱延娟, 周来水, 张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报, 2006, 18(4): 475-481.
ZHU Y J, ZHOU L S, ZHANG L Y. Registration of Scattered Cloud Data [J]. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(4): 475-481. (in Chinese)
辛伟, 普杰信.点到邻域重心距离特征的点云拼接[J].中国图象图形学报, 2011, 16(5): 886-891.
XIN W, PU J X. Point cloud integration base on distances between points and their neighborhood centroids [J]. Journal of Image and Graphics, 2011, 16(5): 886-891. (in Chinese)
张晓, 张爱武.基于图像的点云初始配准[J].计算机工程与设计, 2014, 35(10): 3507-3512.
ZHANG X, ZHANG A W. Initial registration of point clouds based on images [J]. Computer Engineering and Design, 2014, 35(10):3507-3512. (in Chinese)
郭慧, 潘家桢, 林大钧.基于实数编码的多种群遗传算法的点云配准[J].华东理工大学(自然科学版), 2007, 33(5): 733-736.
GUO H, PAN J Z, LIN D J. Registration of Point Cloud Data of Multi-population Genetic Algorithm Based on Real Coding[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2007, 33(5): 733-736. (in Chinese)
MENG Y, ZHANG H. Registration of point clouds using sample-sphere and adaptive distance restriction [J]. The Visual Computer, 2011, 27(6-8): 543-553.
PHS Torr, A Zisserman. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry [J]. Computer Vision & Image Understanding, 2000, 78(1): 138-156.
徐德, 谭民, 李原.机器人视觉测量与控制[M].北京:国防工业出版社, 2014.
XU D, TAN M, LI Y. Visual measurement and control for robots [M]. Beijing: National Defense Industry Press, 2014. (in Chinese)
刘立, 万亚平, 刘朝晖, 等.基于SIFT匹配算法的移动机器人单目视觉定位研究[J].系统仿真学报, 2012, 24(9): 1823-1825.
LIU L, WAN Y P, LIU Z H, et al.. Object Localization for Mobile Robots Using Single-eye Based on SIFT [J]. Journal of System Simulation, 2012, 24(9): 1823-1825. (in Chinese)
BAY H, TUVTELLARS T, GOOL L Van. SURF: speeded up robust features[C]. Proceedings of the European Conference on Computer Vision, 2006: 404-417.
张锐娟, 张建奇, 杨翠.基于SURF的图像配准方法研究[J].红外与激光工程, 2009, 38(1): 160-165.
ZHANG R J, ZHANG J Q, YANG C. Image registration approach based on SURF [J]. Infrared and Laser Engineering, 2009, 38(1):160-165. (in Chinese)
闫自庚, 蒋建国, 郭丹.基于SURF特征和Delaunay三角网格的图像匹配[J].自动化学报, 2014, 40(6): 1216-1222.
YAN Z G, JIANG J G, GUO Dan. Image Matching Based on SURF Feature and Delaunay Triangular Meshes [J]. Acta Automatica Sinica, 2014, 40(6): 1216-1222. (in Chinese)
黄楠楠, 刘贵喜, 张音哲, 等.无人机视觉导航算法[J].红外与激光工程, 2016, 45(7): 269-277.
HUANG N N, LIU G X, ZHANG Y Z, et al.. Unmanned aerial vehicle vision navigation algorithm [J]. Infrared and Laser Engineering, 2016, 45(7): 269-277. (in Chinese)
MORENO D, TAUBIN G. Simple, Accurate, and Robust Projector-Camera Calibration [C]. Second International Conference on 3d Imaging. 2012:464-471. http://www.oalib.com/references/9309385
NAYAR S K, KRISHNAN G, GROSSBERG M D, et al.. Fast separation of direct and global components of a scene using high frequency illumination [J]. ACM Transactions on Graphics, 2006, 25(3):935-944.
XU Y, ALIAGA D G. Robust pixel classification for 3D modeling with structured light [J]. Proceedings of Graphics Interface, 2007:233-240.
李蓉, 邓春健, 邹昆.一种基于MRF的单幅图像数据的三维重构方法研究[J].液晶与显示, 2016, 31(3): 301-309.
LI R, DENG C J, ZOU K. 3D reconstruction method based on single image data by MRF [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(3): 301-309. (in Chinese)
马鑫, 魏仲慧, 何昕, 等.三维枪弹痕点云数据处理及特征提取研究[J].液晶与显示, 2016, 31(9): 889-896.
MA X, WEI Z H, HE X, et al.. Processing and feature extraction for three-dimensional bullet point cloud data [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(9): 889-896. (in Chinese)
0
浏览量
117
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构