浏览全部资源
扫码关注微信
1.中国科学院 西安光学精密机械研究所, 陕西 西安 710119
2.中国科学院大学, 北京 100049
[ "荆 楠(1990-),男,山西运城人,博士研究生,2013年于长春理工大学获得学士学位,主要从事临近空间目标探测与识别的研究。E-mail:jingnanopt@163.com" ]
[ "李 创(1970-),男,陕西宝鸡人,博士,研究员,1992年、1999年于西北工业大学分别获得学士、硕士学位,2005年于西安交通大学获得博士学位,主要从事空间相机结构设计、临近空间目标探测与识别等方面的研究。E-mail:lichuang@opt.ac.cn" ]
收稿日期:2016-12-27,
录用日期:2017-2-18,
纸质出版日期:2017-07-25
移动端阅览
荆楠, 李创, 钟培峰, 等. 光度数据反演临近空间低速点目标形状尺寸信息[J]. 光学 精密工程, 2017,25(7):1738-1747.
Nan JING, Chuang LI, Pei-feng ZHONG, et al. Inversion of low dynamic vehicle shape and dimension information using non-resolved photometric data in near space[J]. Optics and precision engineering, 2017, 25(7): 1738-1747.
荆楠, 李创, 钟培峰, 等. 光度数据反演临近空间低速点目标形状尺寸信息[J]. 光学 精密工程, 2017,25(7):1738-1747. DOI: 10.3788/OPE.20172507.1738.
Nan JING, Chuang LI, Pei-feng ZHONG, et al. Inversion of low dynamic vehicle shape and dimension information using non-resolved photometric data in near space[J]. Optics and precision engineering, 2017, 25(7): 1738-1747. DOI: 10.3788/OPE.20172507.1738.
为了获取临近空间低速点目标的形状尺寸信息,进行了高空气球光学观测实验,研究了如何从光度数据中反演低速点目标形状尺寸信息。利用孔径测光技术处理地基探测装备所拍摄的实验图像数据获取目标光度数据。在反演过程中,采用球谐函数法和细分控制点法两种形状描述方法来参数化描述目标形状,利用球谐函数法的正则化函数、三角面元正则化函数和基于目标物理特性的正则化函数约束目标的形状变化,在对目标光度数据以及由两种形状描述方法产生的模型数据进行傅里叶变换的基础上,结合光学系统点扩散函数来反演空间目标形状尺寸信息。结果表明:两种形状描述方法反演的目标形状主要特征相似,表明这种形状特征是从光度数据提取到的。球谐函数法和细分控制点法反演出的目标等效直径相对误差分别为11.3%和22.6%,长度相对误差分别为11.6%和21.8%。由此表明:球谐函数法反演的临近空间低速目标形状误差较小,更能准确地反演出临近空间低速目标形状。
In order to obtain the shape and dimension information of low dynamic non-resolved object in near space
an experiment on optical detection of high altitude balloon was performed to investigate how to calculate object shape and dimension information from photometric data. In the experiment
experimental images captured by the ground-based detector were processed by aperture photometry technology
thus obtaining non-resolved photometric data. During the inversion process
two shape representation methods as well as three sets of regularization functions were adopted to describe and restrict object shape
respectively. The methods contained spherical harmonics function and subdivision control points
and the functions involved spherical harmonics regularization function
triangle panel regularization function and physical characteristics regularization function. Based on the Fourier transform of photometric data and model data of the shape representation methods
the shape and dimension information of the non-resolved object was inversed by the Point Spread Function (PSF) of the optical system. The result shows that the prominent features presented in the object shape are similar
which indicates that the features are extracted from the photometric data. The relative errors of object equivalent diameter inversed by spherical harmonics function and subdivision control points are 11.3% and 22.6%
and the relative errors of object length are 11.6% and 21.8%
respectively. The comparison of the relative errors proves that the shape representation method based on the spherical harmonics function has smaller error and is more suitable to represent the low dynamic object shape.
STEPHENS H. Near-space[J]. Air Force Magazine, 2005, 88(7):36-40.
SMITH I S Jr. Advancements in NASA balloon research and development[J]. Advances in Space Research, 1996, 17(9):37-44.
LINARES R, JAH M K, CRASSIDIS J L, et al.. Astrometric and photometric data fusion for inactive space object feature estimation[C]. Proceedings of 62nd International Astronautical Congress (IAC), IAF, 2011:2289-2306.
LINARES R, JAH M K, CRASSIDIS J L. Inactive space object shape estimation via astrometric and photometric data fusion[J]. Advances in the Astronautical Sciences, 2012, 143:217-232.
LINARES R, SHOEMAKER M, WALKER A, et al.. Photometric data from non-resolved objects for space object characterization and improved atmospheric modeling[C]. Proceedings of Advanced Maui Optical and Space Surveillance Technologies Conference, Maui Economic Development Board, 2014:1889-1899.
LINARES R, CRASSIDIS J L, JAH M K, et al.. Astrometric and photometric data fusion for resident space object orbit, attitude, and shape determination via multiple-model adaptive estimation[C]. Proceeding of AIAA Guidance, Navigation, and Control Conference, AIAA, 2010:1-18.
FRVH C, KELECY T M, JAH M K. Coupled orbit-attitude dynamics of high area-to-mass ratio (HAMR) objects:influence of solar radiation pressure, earth's shadow and the visibility in light curves[J]. Celestial Mechanics and Dynamical Astronomy, 2013, 117(4):385-404.
HALL D, CALEF B, KNOX K, et al.. Separating attitude and shape effects for non-resolved objects[C]. Proceedings of Advanced Maui Optical and Space Surveillance Technologies Conference, Maui Economic Development Board, 2007:464-475.
袁艳, 孙成明, 张修宝.空间目标表面材料光谱双向反射分布函数测量与建模[J].物理学报, 2010, 59(3):2097-2103.
YUAN Y, SUN CH M, ZHANG X B. Measuring and modeling the spectral bidirectional reflection distribution function of space target's surface material[J]. Acta Physica Sinica, 2010, 59(3):2097-2103. (in Chinese)
孙成明, 赵飞, 袁艳.基于光谱的天基空间点目标特征提取与识别[J].物理学报, 2015, 64(3):034202.
SUN CH M, ZHAO F, YUAN Y. Feature extraction and recognition of non-resolved space object from space-based spectral data[J]. Acta Physica Sinica, 2015, 64(3):034202. (in Chinese)
吴斌, 叶东, 张鑫, 等.非合作目标姿态测量的嵌入式算法[J].光学 精密工程, 2016, 24(11):2804-2813.
WU B, YE D, ZHANG X, et al.. Embedded algorithm for relative pose measurement between non-cooperative targets[J]. Opt. Precision Eng., 2016, 24(11):2804-2813. (in Chinese)
CALEF B, AFRICANO J, BIRGE B, et al.. Photometric signature inversion[J]. SPIE, 2006, 6307:63070E.
FULCOLY D O, KALAMAROFF K I, CHUN F. Determining basic satellite shape from photometric light curves[J]. Journal of Spacecraft and Rockets, 2012, 49(1):76-82.
LINARES R, JAH M K, CRASSIDIS J L, et al.. Space object shape characterization and tracking using light curve and angles data[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1):13-25.
KAASALAINEN M, TORPPA J. Optimization methods for asteroid lightcurve inversion:Ⅰ. Shape determination[J]. Icarus, 2001, 153(1):24-36.
KAASALAINEN M, TORPPA J, MUINONEN K. Optimization methods for asteroid lightcurve inversion:Ⅱ. The complete inverse problem[J]. Icarus, 2001, 153(1):37-51.
HOLZINGER M, ALFRIEND K T, WETTERER C J, et al.. Attitude estimation for unresolved agile space objects with shape model uncertainty[C]. Proceedings of Advanced Maui Optical and Space Surveillance Technologies Conference, Maui Economic Development Board, 2012:921-932.
ASHIKHMIN M, SHIRLEY P. An anisotropic phong BRDF model[J]. Journal of Graphics Tools, 2000, 5(2):25-32.
赵青, 赵建科, 徐亮, 等.航天消光黑漆双向反射分布函数的测量与应用[J].光学 精密工程, 2016, 24(11):2627-2635.
ZHAO Q, ZHAO J K, XU L, et al.. BRDF measurement of matte coating and its application[J]. Opt. Precision Eng., 2016, 24(11):2627-2635. (in Chinese)
李俊麟, 张黎明, 司孝龙, 等.基于六轴串联机械手的双向反射分布函数测量装置[J].光学 精密工程, 2014, 22(11):2983-2989.
LI J L, ZHANG L M, SI X L, et al.. BRDF device based on six-axis robot[J]. Opt. Precision Eng., 2014, 22(11):2983-2989. (in Chinese)
WETTERER C J, LINARES R, CRASSIDIS J L, et al.. Refining space object radiation pressure modeling with bidirectional reflectance distribution functions[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1):185-196.
0
浏览量
1324
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构