浏览全部资源
扫码关注微信
上海大学 机电工程及自动化学院, 上海 200072
[ "于瀛洁(1969-),女,辽宁宽甸人,研究员,1991年于哈尔滨理工大学获得学士学位,1996年、1998年于哈尔滨工业大学分别获得硕士和博士学位,主要从事精密光学检测技术的研究。E-mail:yingjieyu@staff.shu.edu.cn" ]
[ "齐 特(1992-),男,内蒙古通辽人,硕士研究生,2013年于上海工程技术大学获得学士学位,主要从事光学检测技术方面的研究。E-mail:iam7483@163.com" ]
收稿日期:2017-01-19,
录用日期:2017-3-16,
纸质出版日期:2017-07-25
移动端阅览
于瀛洁, 齐特, 武欣. 大尺寸光学元件在位动态干涉拼接测量系统[J]. 光学 精密工程, 2017,25(7):1764-1770.
Ying-jie YU, Te QI, Xin WU. On-line dynamic interference stitching measurement system for large optical elements[J]. Optics and precision engineering, 2017, 25(7): 1764-1770.
于瀛洁, 齐特, 武欣. 大尺寸光学元件在位动态干涉拼接测量系统[J]. 光学 精密工程, 2017,25(7):1764-1770. DOI: 10.3788/OPE.20172507.1764.
Ying-jie YU, Te QI, Xin WU. On-line dynamic interference stitching measurement system for large optical elements[J]. Optics and precision engineering, 2017, 25(7): 1764-1770. DOI: 10.3788/OPE.20172507.1764.
为了满足车间条件下大口径光学元件的高精度在位、在线检测的迫切需求,本文构建了一个适于一般环境下应用的动态干涉拼接测量实验系统。该系统由动态干涉仪、二维移动平台、控制系统及拼接软件等部分构成。应用该系统对200 mm×300 mm×20 mm的光学元件在一般应用环境下进行了拼接测量实验,采用误差均化拼接算法进行拼接,并对拼接后的结果进行分析处理,比较拼接测量与全口径测量结果,PV值的相对误差为3.1%,RMS值的相对误差为1.6%,Power值的相对误差为2.1%。该系统为在车间环境下建立大口径光学元件在位检测建立了基础。
In order to realize on-line and in-situ measurement of high precision optical elements in workshop
a dynamic interference stitching system for large optical elements measured in general environment was investigated. The system was consisted of a dynamic interferometer
two-dimensional mobile platform
control system and stitching software. A stitching experiment for an 200 mm×300 mm optical element was completed by this system in general environment
based on error averaging stitching algorithm. Moreover
the stitching results were analyzed. Comparing the results between stitching measurement and full aperture measurement
the relative deviations of PV
RMS and Power are 3.1%
1.6% and 2.1% respectively. The system lays a foundation for the on-line and in-situ measurement system for large optical elements in the workshop environment.
KIMC J. Polynomial fit of interferograms[J]. Applied Optics, 1982, 21(24):4521-4525.
CHEN M Y, CHENG W M, WANG C W W. Multiaperture overlap-scanning technique for large-aperture test[J]. SPIE, 1991, 1553:626-635.
MURPHYP, FORBES G, FLEIG J, et al.. Stitching interferometry:a flexible solution for surface metrology[J]. Optics and Photonics News, 2003, 14(5):38-43.
闫公敬, 张宪忠, 李柱.子孔径拼接检测光学平面反射镜技术[J].红外与激光工程, 2014, 43(7):2180-2184.
YAN G J, ZHANG X ZH, LI ZH. Technology of sub-aperture stitching testing optical flat mirror[J]. Infrared and Laser Engineering, 2014, 43(7):2180-2184. (in Chinese)
张敏, 隋永新, 杨怀江.用于子孔径拼接干涉系统的机械误差补偿算法[J].光学 精密工程, 2015, 23(4):934-940.
ZHANG M, SUI Y X, YANG H J. Mechanical error compensation algorithm for subaperture stitching interferometry[J]. Opt. Precision Eng., 2015, 23(4):934-940. (in Chinese)
WANG X K. Testing of a large rectangular mirror based on sub-aperture stitching method[J]. Chinese Optics Letters, 2015, 13(S1):S11201.
刘丁枭, 盛伟繁, 王秋实, 等.拼接干涉技术在同步辐射领域的发展现状及趋势[J].光学 精密工程, 2016, 34(10):2357-2369.
LIU D X, SHENG W F, WANG Q SH, et al.. Current status and trends of stitching interferometry in synchrotron radiation field[J]. Opt. Precision Eng., 2016, 34(10):2357-2369. (in Chinese)
WALKERD. Faster production of high-quality telescope mirrors[J]. SPIE Newsroom, 2013, doi:10.1117/2.1201304.004794.
ZHENG Q, CHEN L, SONG L, et al.. Experimental research of improved subaperture stitching method able to eliminate high-order defocus error[J]. SPIE, 2016, 9684:968415, doi:10.1117/12.2241147.
RAGAN C, MCDONNELL E. Interferometry mo ves beyond controlled laboratory environments[J]. Laser Focus World, 2012, 48(12):58-61.
李国培, 于瀛洁, 陈明仪.误差均化的拼接技术[J].光学 精密工程, 2001, 9(6):561-564.
LI G P, YU Y J, CHEN M Y. Stitching technique by error averaging[J]. Opt. Precision Eng., 2001, 9(6):561-564. (in Chinese)
0
浏览量
369
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构