浏览全部资源
扫码关注微信
1.重庆理工大学 电气与电子工程学院, 重庆 400054
2.重庆理工大学 现代光电检测技术与仪器重点重庆市实验室, 重庆 400054
[ "石胜辉(1980-),男,重庆人,博士,讲师,2005年于长春理工大学获得学士学位,2008年于昆明理工大学获得硕士学位,2013年于电子科技大学获得博士学位,主要从事光纤光栅传感方面的研究。E-mail:shshill@cqut.edu.cn" ]
[ "罗彬彬(1981-),男,广西人,博士,副教授,2003年、2006年、2012年于电子科技大学分别获得学士、硕士、博士学位,主要从事光纤传感技术、光信号处理方面的研究。E-mail: lbinbin@cqut.edu.cn" ]
收稿日期:2017-02-20,
录用日期:2017-3-17,
纸质出版日期:2017-07-25
移动端阅览
石胜辉, 赵明富, 罗彬彬, 等. 扭转螺旋型力学微弯长周期光纤光栅的光谱特性[J]. 光学 精密工程, 2017,25(7):1771-1776.
Sheng-hui SHI, Ming-fu ZHAO, Bin-bin LUO, et al. Spectral characteristics of helicoidal mechanically-induced long-period fiber grating[J]. Optics and precision engineering, 2017, 25(7): 1771-1776.
石胜辉, 赵明富, 罗彬彬, 等. 扭转螺旋型力学微弯长周期光纤光栅的光谱特性[J]. 光学 精密工程, 2017,25(7):1771-1776. DOI: 10.3788/OPE.20172507.1771.
Sheng-hui SHI, Ming-fu ZHAO, Bin-bin LUO, et al. Spectral characteristics of helicoidal mechanically-induced long-period fiber grating[J]. Optics and precision engineering, 2017, 25(7): 1771-1776. DOI: 10.3788/OPE.20172507.1771.
利用两个交替放置的周期性V型刻槽板对均匀扭转后的普通单模光纤径向施力制作螺旋型力学微弯长周期光纤光栅(H-MLPFG)。通过实验研究了周期压力和扭转率对该光栅传输谱特性的影响,以及其偏振相关特性。结果表明,施加在光纤的径向压力可以改变H-MLPFG的耦合强度,但不影响其谐振波长变化,LP
13
耦合模耦合强度在波长1 549.75 nm处为30.1 dB。当光纤扭转率由0增大到5.38 rad/cm,LP
11
、LP
12
和LP
13
模对应的扭转灵敏度分别为1.59、1.82和2.24 nm/(rad·cm
-1
)。光纤扭转率为0.90 rad/cm时,LP
13
包层模具有最大偏振相关损耗,在波长1 550.45 nm处偏振相关损耗约为6.86 dB,对应的谐振波长分离值为1.4 nm。该方法制作的LPFG模式耦合强度和谐振波长具有可调谐和可重构性的优点、且结构简单,在光纤通信和传感领域具有潜在的应用价值。
A helicoidal mechanically-induced long-period fiber grating(H-MLPFG)was formed by pressing a twisted fiber from two sides with two V-shaped identical periodically grooved plates. The influence of periodical pressure and twist rate on transmission spectrum of the H-MLPFG were investigated experimentally
together with the polarization characteristics. The results show that the depth of the coupling strength varies with the amount of pressure applied to the fiber
otherwise the resonant wavelength of the H-MLPFG is independent of it. The peak coupling strength of LP
13
mode coupling is 30.1 dB at 1 549.75 nm. Twist sensitivities of the H-MLPFG is 1.59
1.82 and 2.24 nm/(rad·cm
-1
) for LP
11
LP
12
and LP
13
mode couplings respectively when the twist rates increase from 0 to 5.38 rad/cm. The maximum PDL is approximately 6.86 dB at 1 550.45 nm for LP
13
cladding mode and the corresponding resonant wavelength separation value is 1.4 nm. The H-MLPFG exhibits merits of tunable and reconstructable for coupling strength and resonant wavelength
simple and easy operation
thus has potential applications in fields of fiber-optic communications and fiber-optic sensing.
ABRISHAMIAN F, MORISHITA K. Single-channel bandpass filters formed by a metal-doped fiber and long-period gratings[J]. IEEE Photonics Technology Letters, 2016, 28(8):868-871.
ZHANGA P, CHEN X W, GUAN Z G, et al.. Optimization of step-changed long-period gratings for gain-flattening of EDFAs[J]. IEEE Photonics Technology Letters, 2005, 17(1):121-123.
姜明顺, 冯德军, 隋青美.机械感生长周期光纤光栅的可调谐环形光纤激光器[J].光学 精密工程, 2010, 18(2):311-316.
JIANG M SH, FENG D J, SUI Q M. Tunable ring fiber laser using mechanical-induced long-period fiber grating[J]. Opt. Precision Eng., 2010, 18(2):311-316. (in Chinese)
DONGJ L, CHIANG K S. Temperature-insensitive mode converters with CO 2 -laser written long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2015, 27(9):1006-1009.
MARQUES L, HERNANDEZ F U, JAMES S W, et al.. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles[J]. Biosensors and Bioelectronics, 2016, 75:222-231.
QUERO G, ZUPPOLINI S, CONSALES M, et al.. Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria[J]. Sensors and Actuators B:Chemical, 2016, 230:510-520.
WANG T, YASUKOCHI W, KORPOSH S, et al.. A long period grating optical fiber sensor with Nano-assembled porphyrin layers for detecting ammonia gas[J]. Sensors and Actuators B:Chemical, 2016, 228:573-580.
VENGSARKAR A M, LEMAIRE P J, JUDKINS J B, et al.. Long-period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 1996, 14(1):58-65.
KOPPV I, CHURIKOV V M, SINGER J, et al.. Chiral fiber gratings[J]. Science, 2004, 305(5680):74-75.
OH S, LEE K R, PAEK U C, et al.. Fabrication of helical long-period fiber gratings by use of a CO 2 laser[J]. Optics Letters, 2004, 29(3):1464-1466.
JUNGH, SHIN W, KIM J K, et al.. Bending and strain sensitivities in a helicoidal long-period fiber gratings[J]. IEEE Photonics Technology Letters, 2009, 21(17):1232-1234.
IVANOVO V. Fabrication of long-period fiber gratings by twisting a standard single-mode fiber[J]. Optics Letters, 2005, 30(24):3290-3292.
SHIN W, LEE Y L, YU B A, et al.. Spectral characterization of helicoidal long-period fiber gratings in photonic crystal fibers[J]. Optics Communications, 2009, 282(17):3456-3459.
SHIN W, OH K, YU B A, et al.. All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control[J]. IEEE Photonics Technology Letters, 2008, 20(2):153-155.
ZHANG L, LIU Y Q, ZHAO Y H, et al.. High sensitivity twist sensor based on helical long-period grating written in two-mode fiber[J]. IEEE Photonics Technology Letters, 2016, 28(15):1629-1932.
ZHOU X J, SHI S H, ZHANG Z Y, et al.. Refractive index sensing by using mechanically induced long-period grating[J]. IEEE Photonics Journal, 2012, 4(1):119-125.
石胜辉, 周晓军, 张旨遥, 等.机械微弯长周期光纤光栅的制备及其光学特性研究[J].光电子·激光, 2011, 22(10):1447-1450.
SHI SH H, ZHOU X J, ZHANG ZH Y, et al.. Experimental investigation on spectrum characteristics of mechanically-induced long-period gratings[J]. Journal of Optoelectronics·Laser, 2011, 22(10):1447-1450. (in Chinese)
CHO J Y, LEE K S. A birefringence compensation method for mechanically induced long-period fiber gratings[J]. Optics Communications, 2002, 213(4-6):281-284.
0
浏览量
396
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构