浏览全部资源
扫码关注微信
上海交通大学 电子信息与电气工程学院, 上海 200240
[ "汪炜(1992-), 男, 安徽桐城人, 博士研究生, 2012年、2015年于武汉理工大学分别获得学士、硕士学位, 主要从事精密工程与智能系统研究。E-mail:aries-wang@sjtu.edu.cn" ]
[ "颜国正(1961-), 男, 湖南桃江人, 教授, 博士生导师, 1993年于吉林工业大学获得博士学位, 1995年于南京航空航天大学博士后出站, 主要研究方向为智能机器人、微小机电系统等。E-mail:gzhyan@sjtu.edu.cn" ]
收稿日期:2017-02-09,
录用日期:2017-4-17,
纸质出版日期:2017-07-25
移动端阅览
汪炜, 颜国正, 王志武, 等. 肠道机器人扩张机构设计与优化[J]. 光学 精密工程, 2017,25(7):1815-1824.
Wei WANG, Guo-zheng YAN, Zhi-wu WANG, et al. Design and optimization of expanding mechanism of intestinal robot[J]. Optics and precision engineering, 2017, 25(7): 1815-1824.
汪炜, 颜国正, 王志武, 等. 肠道机器人扩张机构设计与优化[J]. 光学 精密工程, 2017,25(7):1815-1824. DOI: 10.3788/OPE.20172507.1815.
Wei WANG, Guo-zheng YAN, Zhi-wu WANG, et al. Design and optimization of expanding mechanism of intestinal robot[J]. Optics and precision engineering, 2017, 25(7): 1815-1824. DOI: 10.3788/OPE.20172507.1815.
为了满足肠道机器人在肠道中运动和驻留的要求,设计了一种大变径比的新型扩张机构。该机构通过采用双层叠腿式设计,增大了与肠道的接触面积,最大扩张半径达到24.5 mm,变径比增加到3.27。为了进一步研究该扩张机构的性能,建立了扩张臂的数学模型,对扩张臂的力学与运动学特性进行了理论分析。然后通过有限元分析,对扩张臂运动过程进行了动力学仿真,研究了不同扩张半径下,扩张臂的应力分布和变化趋势,基于有限元分析结果,对扩张臂进行了优化设计,优化后的等效应力最大值比优化前减小了12.89%。之后通过ADAMS对扩张臂进行运动学仿真,以验证其运动学模型的准确性。最后搭建了力学性能实验台,对其扩张力进行了测试,以验证其力学模型的准确性。实验结果显示:实验值与理论值的变化趋势基本一致,而且实验值小于理论值;机构扩张初始阶段误差较大,扩张半径为7.5 mm时,实验值仅为理论值的14.30%;之后误差急剧减小并趋于稳定,扩张半径为10~23 mm时,实验值平均为理论值的73.64%;扩张臂1、2、3的实际扩张半径分别为24.5、24和23 mm。结果显示本文设计的肠道扩张机构基本满足肠道安全性和大变径比的设计要求,而且结构优化效果明显。
A new-type expanding mechanism with Variable Diameter Ratio (VDR) is designed to satisfy requirements of intestinal robot movement and anchoring in the intestine tract. With the double-stacked folding design of the mechanism
the contact area with intestine tract is increased. The maximum expanding radius reaches to 24.5 mm
and VDR increases to 3.27. To further study the performance of the expanding mechanism
the mathematical model of the expanding arm is established to analyze the mechanical and kinematic properties of the expanding arm. Then
the dynamics of the expanding arm is simulated by using the finite element analysis (FEA) and the stress distribution and the trend of the expanding arm with different expanding radius are studied. Optimization design of expanding arm is conducted based on the results of FEA
and maximum of equivalent stress after optimization reduced by 12.89% than that before optimization. Subsequently
the kinematics of the expanding arm is simulated by ADAMS and the kinematics model is verified. Finally
the mechanical performance test platform is established to test its expanding force and verify its mechanical model. Experimental result indicates:the variation trend of experimental value and theoretical value is basically the same
and experimental value is less than theoretical value; the error is large in initial stage of mechanism expanding
and experimental value is only 14.30% of theoretical value when expanding radius is 7.5 mm
After that
the error drastically decreases and the mechanism tends to be stable
and experimental value is 73.64% of theoretical value on average when expanding radius is 10 mm-23 mm; Actual expanding radius are respectively 24.5
24 and 23 mm for expanding arms 1
2 and 3. Designed expanding mechanism of intestinal tract basically satisfies design requirements of intestinal tract safety and large VDR
and structural optimization effect is significant.
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2017.CA:A Cancer Journal for Clinicians, 2017, 67(1):7-30.
IDDAN G, MERON G, GLUKHOVSKY A, et al.. Wireless capsule endoscopy. Nature, 2000, 405(5):417-418.
LI B P, MENG M Q H. Computer-aided detection of bleeding regions for capsule endoscopy images.IEEE Transactions on Biomedical Engineering, 2009, 56(4):1032-1039.
MOHAMMED A A, DANIAL C, JAMES B, et al.. Design and implementation of a wireless capsule suitable for autofluorescence intensity detection in biological tissues. IEEE Transactions on Biomedical Engineering, 2013, 60(1):55-62.
石煜, 颜国正, 朱柄全.胶囊内窥镜便携式无线能量发射系统.光 学精密工程, 2014, 22(1):132-137.
SHI Y, YAN G ZH, ZHU B Q. Portable wireless power transmitting system for video capsule endoscopes. Opt. Precision Eng., 2014, 22(1):132-137. (in Chinese)
VALDASTRI P, SIMI M, WEBSTER R J. Advanced technologies for gastrointestinal endoscopy.Annual Review of Biomedical Engineering, 2012, 14:397-429.
YIM S, SITTI M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope.IEEE Transactions on Robotics, 2012, 28(1):183-194.
ZHOU H, ALICI G, THAN T D, et al.. Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 2013, 60(6):1751-1759.
POPEK K M, SCHMID T, ABBOTT J J. Six-degree-of-freedom localization of an untethered magnetic capsule using a single rotating magnetic dipole.IEEE Robotics and Automation Letters, 2017, 2(1):305-312.
SIMI M, VALDASTRI P, QUAGLIA C, et al.. Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration. IEEE/ASME Transactions on Mechatronics, 2010, 15(2):170-180.
陈雯雯, 颜国正, 贺术, 等.胶囊内窥镜在肠道中的钳位.光 学精密工程, 2013, 21(6):1553-1560.
CHEN W W, YAN G ZH, HE SH, et al.. Clamping mechanism of capsule endoscopes in intestine. Opt. Precision Eng., 2013, 21(6):1553-1560. (in Chinese)
WOOD S P, CONSTANDINOU T G. Wireless capsule endoscope for targeted drug delivery:mechanics and design considerations. IEEE Transaction on Biomedical Engineering, 2013, 60(4):945-953.
SLIKER L J, KERN M D, RENTSCHLER M E. An automated traction measurement platform and empirical model for evaluation of rolling micropatterned wheels.IEEE/ASME Transactions on Mechatronics, 2015, 20(4):1854-1862.
GAO J Y, YAN G ZH, WANG Z W, et al.. A capsule robot powered by wireless power transmission:Design of its receiving coil. Sensors and Actuators A Physical, 2015, 234:133-142.
MANWELL T, VÍTEK T, RANZANI T, MENCIASSI A, et al.. Elastic mesh braided worm robot for locomotive endoscopy. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014:848-851.
CHEN W W, YAN G Z, WANG Z W, et al.. A wireless capsule robot with spiral legs for human intestine. International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2):147-161.
GAO P, YAN G Z, WANG Z W, et al.. A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(3):256-267.
YAN L, WANG T, LIU D, et al.. Capsule robot for obesity treatment with wireless powering and communication.IEEE Transactions on Industrial Electronics, 2015, 62(2):1125-1133.
贺术, 颜国正, 柯全, 等.肠道驻留机构的设计和实验.光 学精密工程, 2015, 23(1):102-109.
HE SH, YAN G ZH, KE Q, et al.. Design and experiment of an intestinal anchoring mechanism.Opt. Precision Eng., 2015, 23(1):102-109. (in Chinese)
GAO J Y, YAN G Z. Locomotion analysis of an inchworm-like capsule robot in the intestinal tract.IEEE Transactions on Biomedical Engineering, 2016, 63(2):300-310.
GAO J Y, YAN G Z, WANG Z W, et al.. Design and testing of a motor-based capsule robot powered by wireless power transmission. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):683-693.
0
浏览量
82
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构