浏览全部资源
扫码关注微信
海军航空工程学院 控制工程系, 山东 烟台 264001
[ "迟铖(1989-), 男, 山东日照人, 博士研究生, 2011年于河海大学获得学士学位, 2013年于海军潜艇学院获得硕士学位, 主要从事磁性目标探测及磁干扰消除方面的研究。E-mail:cheng.chihhu@163.com" ]
[ "吕俊伟(1960-), 男, 山东牟平人, 教授, 博士生导师, 1985年于吉林工业大学获得硕士学位, 2003年于法国第戎大学获得博士学位, 主要从事目标识别与智能系统?目标探测与跟踪等方面的研究. E-mail:ljwei369@163.com" ]
收稿日期:2017-01-19,
录用日期:2017-3-6,
纸质出版日期:2017-07-25
移动端阅览
迟铖, 吕俊伟, 黄婧丽. 十字形磁梯度张量系统的误差校正[J]. 光学 精密工程, 2017,25(7):1919-1926.
Cheng CHI, Jun-wei LÜ, Jing-li HUANG. Error calibration of cross magnetic gradiometer[J]. Optics and precision engineering, 2017, 25(7): 1919-1926.
迟铖, 吕俊伟, 黄婧丽. 十字形磁梯度张量系统的误差校正[J]. 光学 精密工程, 2017,25(7):1919-1926. DOI: 10.3788/OPE.20172507.1919.
Cheng CHI, Jun-wei LÜ, Jing-li HUANG. Error calibration of cross magnetic gradiometer[J]. Optics and precision engineering, 2017, 25(7): 1919-1926. DOI: 10.3788/OPE.20172507.1919.
针对十字形磁梯度张量系统中的单磁力仪误差(三轴灵敏度偏差、非正交误差和零点漂移误差)以及磁力仪之间存在的不对正误差,提出了十字形磁梯度张量系统的误差校正方法。首先,建立单磁力仪误差模型,采用基于椭球约束的最小二乘拟合算法对磁力仪的测量数据进行拟合从而得到椭球拟合参数;然后,接着利用Cholesky分解得到单磁力仪误差校正矩阵;最后在单磁力仪误差校正的基础上,利用正交Procrustes方法对不同磁力仪间的测量数据进行拟合从而得到磁力仪间的不对正误差校正矩阵。对提出的方法进行仿真与实测实验验证,实验结果表明:经过校正,磁梯度张量各分量的最大波动量由10 049 nT/m降到52 nT/m。提出的校正方法可以基本消除十字形磁梯度张量系统的误差,提高测量结果的准确度,且方法操作简单,不需要高精度的三轴无磁转台等设备,具有较高的实用价值。
For the vector magnetometer errors (scale factors
non-orthogonal error
bias) and misalignment error of the cross magnetic gradiometer
an error calibration method was proposed in this paper. Firstly
an error calibration model of the vector magnetometer errors was established
ellipsoid fitting parameters are calculated by the least square algorithm under ellipsoid restriction for fitting the measurement data to an ellipsoid. Then the Cholesky factorization was used to calculate the error calibration matrix of the vector magnetometer errors
and then the misalignment error calibration matrix could be solved by the orthogonal Procrustes method. Finally
simulations and experiments were carried out for verification of the proposed error calibration method. The experiment result shows:after calibration
the maximum fluctuation quantity of all components of the magnetic gradient tensor reduces from 10 049 nT/m to 52 nT/m. The proposed error calibration method can effectively calibrate the cross magnetic gradiometer
and the cross magnetic gradiometer can be calibrated without using high precision tri-axial non-magnetic platform
the proposed method has high value for practical application.
PYLVÄNÄINEN T. Automatic and adaptive calibration of 3D field sensors. Applied Mathematical Modelling, 2008, 32(4):575-587.
龙亮, 钟少龙, 徐静, 等.微型光纤磁传感器的设计与制作.光学 精密工程, 2013, 21(9):2294-2302.
LONG L, ZHONG SH L, XU J, et al.. Design and fabrication of micro fiber-optic magnetic sensor. Opt. Precision Eng., 2013, 21(9):2294-2302. (in Chinese)
陈晨, 秦佳男, 张雪, 等.用于SERF原子磁力仪的DFB激光器温度控制系统.红外与激光工程, 2016, 45(12):1205004.
CHEN CH, QIN J N, ZHANG X, et al.. Temperature controller for DFB laser utilized in SERF atomic magnetometer. Infrared and Laser Engineering, 2016, 45(12):1205004. (in Chinese)
LEE K M, LI M.Magnetic tensor sensor for gradient-based localization of ferrous object in geomagnetic field. IEEE Transactions on Magnetics, 2016, 52(8):4002610.
吕俊伟, 迟铖, 于振涛, 等.磁梯度张量不变量的椭圆误差消除方法研究.物理学报, 2015, 64(19):0190701.
LÜ J W, CHI CH, YU ZH T, et al.. Research on the asphericity error elimination of the invariant of magnetic gradient tensor. Acta Physica Sinica, 2015, 64(19):0190701. (in Chinese)
VASCONCELOS J F, ELKAIM G, SILVESTRE C, et al.. Geometric approach to strapdown magnetometer calibration in sensor frame. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1293-1306.
SUI Y Y, LI G, WANG S L, et al.. Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil. Review of Scientific Instruments, 2014, 85(1):014701.
PANG H F, PAN M C, WAN C B, et al.. Integrated compensation of magnetometer array magnetic distortion field and improvement of magnetic object localization. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5670-5676.
AUSTER H U, FORNACON K H, GEORGESCU E, et al.. Calibration of flux-gate magnetometers using relative motion. Measurement Science and Technology, 2002, 13(7):1124-1131.
张光, 张英堂, 尹刚, 等.基于线性误差模型的磁张量系统校正.吉林大学学报(工学版), 2015, 45(3):1012-1016.
ZHANG G, ZHANG Y T, YIN G, et al.. Calibration method of magnetic tensor system based on linear error model. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3):1012-1016. (in Chinese)
黄玉, 郝燕玲.基于FLANN和最小二乘的磁梯度计误差校正.仪器仪表学报, 2012, 33(4):911-917.
HUANG Y, HAO Y L. Error correction of magnetic field component gradiometer based on FLANN and least-squares. Chinese Journal of Scientific Instrument, 2012, 33(4):911-917. (in Chinese)
HUANG Y, SUN F, WU L H. Synchronous correction of two three-axis magnetometers using FLANN. Sensors and Actuators A:Physical, 2012, 179:312-318.
高翔, 严胜刚, 李斌.三轴磁通门磁梯度仪转向差校正方法研究.仪器仪表学报, 2016, 37(6):1226-1232.
GAO X, YAN SH G, LI B. Study on the steering differential calibration method for magnetic gradiometer base on tri-axis fluxgate. Chinese Journal of Scientific Instrument, 2016, 37(6):1226-1232. (in Chinese)
YIN G, ZHANG Y T, FAN H B, et al..Linear calibration method of magnetic gradient tensor system. Measurement, 2014, 56:8-18.
于振涛, 吕俊伟, 郭宁, 等.四面体磁梯度张量系统的误差补偿.光学 精密工程, 2014, 22(10):2683-2690.
YU ZH T, LÜ J W, GUO N, et al..Error compensation of tetrahedron magnetic gradiometer. Opt. Precision Eng., 2014, 22(10):2683-2690. (in Chinese)
刘丽敏. 磁通门张量的结构设计、误差分析及水下目标探测. 长春: 吉林大学, 2012.
LIU L M. Configuration design, error analysis and underwater target detection of fluxgate tensor magnetometer. Changchun:Jilin University, 2012. (in Chinese)
曾占魁, 谷蔷薇, 曹喜滨.基于正交Procrustes分析的航天器单目视觉相对位姿确定方法.红外与激光工程, 2015, 44(S1):113-118.
ZENG ZH K, GU Q W, CAO X B. Relative pose monocular vision determination of spacecraft using orthogonal Procrustes analysis. Infrared and Laser Engineering, 2015, 44(S1):113-118. (in Chinese)
0
浏览量
972
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构