浏览全部资源
扫码关注微信
1.中国科学院 上海光学精密机械研究所 中国科学院强激光材料重点实验室, 上海 201800
2.中国科学院大学, 北京 100049
[ "罗阳(1993-), 男, 湖北人, 2015年于华中科技大学获得学士学位, 主要从事KDP/DKDP晶体激光损伤及预处理机制方面的研究。E-mail:luoyang@siom.ac.cn" ]
胡国行(1983-), 男, 浙江人, 博士, 副研究员, 硕士生导师, 2006年于浙江大学获得学士学位, 2011年于中科院上海光机所获得博士学位, 主要从事强激光与物质相互作用方面的研究。E-mail:huguohang@siom.ac.cn HU Guo-hang, E-mail:huguohang@siom.ac.cn
赵元安(1976-), 男, 陕西人, 研究员, 博士生导师, 2001年于四川大学获得硕士学位, 2005年于中科院上海光机所获得博士学位, 主要从事强激光与光学材料相互作用的研究。E-mail:yazhao@siom.ac.cn ZHAO Yuan-an, E-mail:yazhao@siom.ac.cn
收稿日期:2017-02-20,
录用日期:2017-4-1,
纸质出版日期:2017-08-25
移动端阅览
罗阳, 胡国行, 赵元安, 等. 激光预处理提升DKDP晶体加工表面的抗损伤能力[J]. 光学 精密工程, 2017,25(8):1987-1994.
Yang LUO, Guo-hang HU, Yuan-an ZHAO, et al. Improvement of laser damage resistance at surface of DKDP crystal by laser conditioning process[J]. Optics and precision engineering, 2017, 25(8): 1987-1994.
罗阳, 胡国行, 赵元安, 等. 激光预处理提升DKDP晶体加工表面的抗损伤能力[J]. 光学 精密工程, 2017,25(8):1987-1994. DOI: 10.3788/OPE.20172508.1987.
Yang LUO, Guo-hang HU, Yuan-an ZHAO, et al. Improvement of laser damage resistance at surface of DKDP crystal by laser conditioning process[J]. Optics and precision engineering, 2017, 25(8): 1987-1994. DOI: 10.3788/OPE.20172508.1987.
针对晶体表面的损伤特性,采用小光斑扫描激光预处理技术预辐照DKDP晶体元件,并采用表面损伤自动探测系统实时分析每个脉冲辐照后晶体表面的损伤情况,比较预处理和未预处理区域的损伤点密度确定表面预处理效果,并进一步模拟分析表面各类缺陷在纳秒强激光辐照下的动态过程,解释激光预处理对精抛表面提升作用的微观机制并分析它对粗抛表面提升不明显的原因。实验结果表明,激光预处理技术对粗抛表面的提升作用并不明显,但是可以大幅度抑制精抛表面的损伤点密度。在本文的实验条件下,晶体表面的抗激光损伤能力可以提升约60%。比较体材料和精抛表面的预处理效果发现:当体材料的抗破坏能力通过预处理提升后,精抛表面的抗激光损伤能力也会提升,由此可见精抛表面的激光预处理效果与体材料性能相关。
In view of damage characteristics of crystal surface
the effect of laser conditioning process on the laser induced surface damage threshold of DKDP crystals was determined by combining raster scan pre-exposure and real-time damage event imaging technique. By simulating dynamic process of different defects exposed to intense nanosecond laser pulse
the mechanisms of the effect of laser conditioning process on rough and well polished surfaces were discussed separately. The results show that laser damage density of well polished surface is remarkably decreased by the laser conditioning process while laser damage resistance of the rough polished surface cannot be improved. The laser damage resistance is increased by 60% under given experimental conditions. By comparing effects of laser conditioning process on the well polished surface to that in the bulk
it indicates that damage resistance on the surface can be improved when laser damage resistance in the bulk is increased by laser conditioning process. Thereby the effect of laser conditioning process on surface damage threshold is related to that of bulk material.
GUILLET F, BERTUSSI B, LAMAIGNÉRE L, et al.. Effects of thermal annealing on KDP and DKDP on laser damage resistance at 3ω[J]. SPIE, 2010, 7842:78421T.
HU G H, ZHAO Y N, LI D W, et al.. Transmittance increase after laser conditioning reveals absorption properties variation in DKDP crystals[J]. Optics Express, 2012, 20(22):25169-25180.
ADAMS J J, JARBOE J A, FEIT M D, et al.. Comparison between S/1 and R/1 tests and damage density vs. fluence (ρ(φ)) results for unconditioned and sub-nanosecond laser-conditioned KD 2 PO 4 crystals[J]. SPIE, 2007, 6720:672014.
ARENBERG J W, MORDAUNT D W. Experimental investigation on the role of wavelength in the laser conditioning effect[C]. Laser Induced Damage in Optical Materials, NBS, 1989:516-519.
STEWART A F, GUENTHER A H, DOMANN F E. The properties of laser annealed dielectric films[C]. Laser Induced Damage in Optical Materials, NBS, 1988:369-387.
WOLFE C R, KOZLOWSKI M R, CAMPBELL J H, et al.. Laser conditioning of optical thin films[C]. 1989 Boulder Damage Symposium, Lawrence Livermore National Lab., 1989:360-375.
WANG Y L, ZHAO Y N, HU G H, et al.. Mitigation of scattering defect and absorption of DKDP crystals by laser conditioning[J]. Optics Express, 2015, 23(12):16273-16280.
WOLFE J E, SCHRAUTH S E. Automated laser damage test system with real-time damage event imaging and detection[J]. SPIE, 2006, 6403:640328.
HU G H, ZHAO Y N, SHAO J D, et al.. Real-time damage event imaging reveals the absorber inducing laser damage with low density in solgel antireflective coatings[J]. Journal of the Optical Society of America B, 2013, 30(5):1186-1193.
CHAN C H. Effective absorption for thermal blooming due to aerosols[J]. Applied Physics Letters, 1975, 26(11):628-630.
CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M]. 2nd ed.. London:Oxford University Press, 1959.
ANISIMOV S I, KHOKHLOV V A. Instabilities in Laser-matter Interaction[M]. Boca Raton:CRC Press, 1995.
FEIT M D, RUBENCHIK A M. Mechanisms of CO 2 laser mitigation of laser damage growth in fused silica[J]. SPIE, 2003, 4932:91-102.
ZAITSEVA N, ATHERTON J, ROZSA R, et al.. Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals[J]. Journal of Crystal Growth, 1999, 197(4):911-920.
孙洵, 张艳珍, 高顺清, 等.包裹体对KDP晶体光损伤阈值的影响[J].压电与声光, 2004, 26(6):485-487.
SUN X, ZHANG Y ZH, GAO SH Q, et al.. Effect of inclusions on laser damage of KDP crystals[J]. Piezoelectrics & Acoustooptics, 2004, 26(6):485-487.
DYAN A, POMMIES M, DUCHATEAU G, et al. Revisited thermal approach to model laser-induced damage and conditioning process in KH 2 PO 4 and D 2 x KH 2(1- x ) PO 4 crystals[J]. Proceedings of SPIE, 2006, 6403:640307.
DUCHATEAU G. Modeling laser conditioning of KDP crystals[J]. SPIE, 2009, 7504:75041K.
MARSHALL C D, PAYNE S A, HENESIAN M A, et al.. Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion[J]. Journal of the Optical Society of America B, 1994, 11(5):774-785.
GENIN F Y, SALLEO A, PISTOR T V, et al.. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A, 2001, 18(10):2607-2616.
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1921, 221(582-593):163-198.
0
浏览量
638
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构