浏览全部资源
扫码关注微信
河北工业大学 机械工程学院, 天津 300130
[ "程景萌(1981-), 女, 河北石家庄人, 实验师, 博士研究生, 2005年、2011年于河北工业大学分别获得学士、硕士学位, 主要从事微流控芯片与细胞驱动的研究。E-mail:81745535@qq.com" ]
张思祥(1959-), 男, 天津人, 教授, 博士生导师, 1982年、1993年于浙江大学分别获得学士、硕士学位, 1996于天津大学获得博士学位, 主要从事光学仪器和分析仪器的研究。E-mail:zhangsixiang@hebut.edu.cn ZHANG Si-xiang, E-mail:zhangsixiang@hebut.edu.cn
收稿日期:2017-03-13,
录用日期:2017-4-14,
纸质出版日期:2017-08-25
移动端阅览
程景萌, 杨丽, 周围, 等. 利用光压差分技术筛选细胞的影响参数[J]. 光学 精密工程, 2017,25(8):2029-2037.
Jing-meng CHENG, Li YANG, Wei ZHOU, et al. Analysis on influence parameters of cell sorting using optical pressure difference technology[J]. Optics and precision engineering, 2017, 25(8): 2029-2037.
程景萌, 杨丽, 周围, 等. 利用光压差分技术筛选细胞的影响参数[J]. 光学 精密工程, 2017,25(8):2029-2037. DOI: 10.3788/OPE.20172508.2029.
Jing-meng CHENG, Li YANG, Wei ZHOU, et al. Analysis on influence parameters of cell sorting using optical pressure difference technology[J]. Optics and precision engineering, 2017, 25(8): 2029-2037. DOI: 10.3788/OPE.20172508.2029.
本文采用有限体积法建立了交叉型细胞分离模型,提出了一种基于光压差分的细胞筛选仿真方法,分析微流体中细胞筛选的影响因素。基于层流、流体流动粒子追踪、波动光学理论,利用有限元分析法建立了一种交叉型光学颗粒分离模型,研究了利用光压差分技术分离细胞的各种影响因素,其中包括微粒直径,激光功率、温度、光纤直径,分析了微粒在流体中因光辐射压力作用下的偏移距离。实验结果表明:在微流体中,激光功率、细胞直径、温度(20℃)和偏移距离大体上成正比关系,光纤直径和细胞直径在大小相当的情况下光辐射压力能够达到最大值,当激光通过光纤作用于直径分别为3,8和20
μ
m的微粒时,光纤直径为7
μ
m或8
μ
m时光辐射压力最大,所以选用直径为8
μ
m的单模光纤作为一个重要的实验光学器件。所得结论为深入研究细胞筛选影响因素的数值仿真精度提供了参考与借鉴。
In this paper
the finite volume method was adopted to establish cross cell separation model
and a cell screening simulation method was proposed based on light pressure difference for analysis of influence factors of cell screening in microfluidics. Based on laminar flow
fluid flow
particle tracking and wave optics theories
a cross type optical particle separation model was established by finite element analysis. Using light pressure difference technology
various factors affecting the separation of cells were studied
including particle diameter
laser power
temperature and fiber diameter. Furthermore
deflection distances of the particles in the fluid due to the optical radiation pressure were determined experimentally. The results show that in microfluidics
laser power
cell diameter and temperature (20℃) generally are proportional to deflection distance separately. When fiber diameter and cell diameter are in the same size
optical radiation pressure reaches the maximum. When laser acts on particles with diameter of 3
μ
m
8
μ
m and 20
μ
m through fibers with diameters of 7
μ
m or 8
μ
m
radiation pressure reaches its maximum
thus choosing single mode fiber with diameter of 8
μ
m as an important optical device in the experiments. The above conclusion provides an reference for further study of precision of numerical simulation on cell screening factors.
赵宇, 杨德超, 陈浩, 等.微米级锥形光纤的近场光镊[J].应用光学, 2014, 35(2):359-364.
ZHAO Y, YANG D CH, CHEN H, et al.. Near-field optical tweezers based on micron tapered fiber[J]. Journal of Applied Optics, 2014, 35(2):359-364.
李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动[M].北京:科学出版社, 2012:121-123.
LI ZH H, WU J K, HU G Q, et al.. Fluid Flow in Microfluidic Chips[M]. Beijing:Science Press, 2012:121-123.
MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical analysis systems:a novel concept for chemical sensing[J]. Sensors and Actuators B:Chemical, 1990, 1(1-6):244-248.
MOHAMMADI M, MADADI H, CASALS-TERR J, et al.. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation[J]. Analytical and Bioanalytical Chemistry, 2015, 407(16):4733-4744.
ZELLNER P, SHAKE T, HOSSEINI Y, et al.. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping[J]. Electrophoresis, 2015, 36(2):277-283.
ZENG L, QIU L, YANG X T, et al.. Isolation of lung multipotent stem cells using a novel microfluidic magnetic activated cell sorting system[J]. Cell Biology International, 2015, 39(11):1348-1353.
BROUZES E, KRUSE T, KIMMERLING R, et al.. Rapid and continuous magnetic separation in droplet microfluidic devices[J]. Lab on a Chip, 2015, 15(3):908-919.
WAND X L, CHEN S X, KONG M, et al.. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies[J]. Lab on a Chip, 2011, 11(21):3656-3662.
KIM S B, YOON S Y, SUNG H J, et al.. Cross-type optical particle separation in a microchannel[J]. Analytical Chemistry, 2008, 80(7):2628-2630.
LEONG T, JOHANSSON L, JULIANO P, et al.. Ultrasonic separation of particulate fluids in small and large scale systems:a review[J]. Industrial & Engineering Chemistry Research, 2013, 52(47):16555-16576.
GRENVALL C, AUGUSTSSON P, FOLKENBERG J R, et al.. Harmonic microchip acoustophoresis:a route to online raw milk sample precondition in protein and lipid content quality control[J]. Analytical Chemistry, 2009, 81(15):6195-6200.
ROHRBACH A, STELZER E H K. Trapping forces, force constants and potential depths for dielectric spheres in the presence of spherical aberrations[J]. Applied Optics, 2002, 41(13):2494-2507.
李银妹.光镊原理技术和应用:光镊原理、技术和应用[M].北京:中国科学技术大学出版社, 1996:223-228.
LI Y M. The Principle of Optical Tweezers Technology and Application[M]. Beijing:University of Science and Technology of China Press, 1996:223-228.
ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4):156-159.
王锴, 邢岐荣, 毛方林, 等.利用飞秒激光光镊捕获生物细胞[J].光电子·激光, 2005, 16(12):1480-1483.
WANG K, XING Q R, MAO F L, et al.. Optical trapping of biological cells using a femtosecond laser tweezers[J]. Journal of Optoelectronics·Laser, 2005, 16(12):1480-1483.
SUN T, KOVAC J, VOLDMAN J. Image-based single-cell sorting via dual-photopolymerized microwell arrays[J]. Analytical Chemistry, 2014, 86(2):977-981.
KIM S B, YOON S Y, SUNG H J, et al.. Cross-type optical particle separation in a microchannel[J]. Analytical Chemistry, 2008, 80(7):2628-2630.
0
浏览量
195
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构