浏览全部资源
扫码关注微信
1.安徽大学 电气工程与自动化学院, 安徽 合肥 230601
2.安徽大学 计算智能与信号处理教育部重点实验室, 安徽 合肥 230009
3.中国科学技术大学 精密机械与精密仪器系, 安徽 合肥 230022
苏亚辉(1968-), 男, 安徽凤台人, 博士, 副教授, 硕士生导师, 2007年于中国科学技术大学精密仪器与机械获得博士学位, 主要研究方向有超快激光微纳米加工技术、计算全息技术、仿生界面设计及制备技术。E-mail:ustcsyh@ahu.edu.cn SU Ya-hui, E-mail:ustcsyh@ahu.edu.cn
[ "范珍珠(1991-), 女, 安徽宿州人, 硕士研究生, 2014年于安徽大学获得学士学位, 主要从事飞秒激光微纳加工的研究。E-mail:fanzhenzhu@gotion.com.cn" ]
收稿日期:2017-04-11,
录用日期:2017-4-30,
纸质出版日期:2017-08-25
移动端阅览
苏亚辉, 范珍珠, 汪超炜, 等. 毛细力辅助飞秒激光直写制备各向异性及多级结构[J]. 光学 精密工程, 2017,25(8):2057-2063.
Ya-hui SU, Zhen-zhu FAN, Chao-wei WANG, et al. Fabrication of anisotropic and hierarchical structures using femtosecond laser printing capillary force assisted self-assembly[J]. Optics and precision engineering, 2017, 25(8): 2057-2063.
苏亚辉, 范珍珠, 汪超炜, 等. 毛细力辅助飞秒激光直写制备各向异性及多级结构[J]. 光学 精密工程, 2017,25(8):2057-2063. DOI: 10.3788/OPE.20172508.2057.
Ya-hui SU, Zhen-zhu FAN, Chao-wei WANG, et al. Fabrication of anisotropic and hierarchical structures using femtosecond laser printing capillary force assisted self-assembly[J]. Optics and precision engineering, 2017, 25(8): 2057-2063. DOI: 10.3788/OPE.20172508.2057.
将飞秒激光双光子聚合加工技术和毛细力诱导自组装技术相结合实现了各向异性结构和多级结构的制备。首先,使用飞秒激光双光子加工技术加工出微柱阵列,将微柱置于显影液中显影,然后放置在空气中。在显影液蒸发的过程中,微柱结构单元受到毛细力的作用而弯曲实现自组装。通过控制微柱的高度和直径的不一致性实现了两种各向异性结构制备方法,并成功制备了底层微柱直径分别为2
μ
m和6
μ
m双层结构。由于毛细力的大小和微柱高度无关,且同样端部变形量下较高微柱的弹性回复力小于较低微柱的弹性回复力,更易发生弯曲;直径较大的微柱具有更强的抗弯曲能力,从而引导直径较小的微柱向较大的微柱倾斜,藉此制备了各向异性结构。使用毛细力自组装辅助飞秒激光微纳加工可以实现灵活可控的复杂3D结构的加工,并将在生物医药、化学分析、微流体等领域发挥重要作用。
A method for preparation of designable anisotropic and hierarchical structures using femtosecond laser printing and capillary force assisted self-assembly was proposed. First
a periodic micro-pillar arrays template was fabricated by localized femtosecond laser polymerization. The micro-pillars were immersed in developed solution for about 40 min and subsequently exposed in the air. During the evaporation of developed solution
micro-pillars was self-assembled into periodic anisotropic architectures with the assistance of capillary force. Two methods to fabricate anisotropic structures were proposed. One was realized via controlling heights of pillars in a cell
the other was achieved via controlling pillar diameters. Furthermore
double-layer structures with underlayer pillar diameters of 2
μ
m and 6
μ
m were fabricated respectively. The results indicate that the capillary force is irrespective to the height of pillars
and the elastic restoring force of the higher pillars is stronger than the lower pillars
thus higher pillars are prone to bend and the pillars with larger diameter are more likely to remain upright. Complex 3D structures can be achieved flexibly by combing femtosecond laser fabrication with capillary force self-assembly technology
which will play essential roles in biomedicine
chemistry and microfluidic engineering.
苏亚辉, 汪金礼, 杨亮, 等.飞秒激光全息并行加工中的多焦点均一性[J].光学 精密工程, 2013, 21(8):1936-1941.
SU Y H, WANG J L, YANG L, et al.. Uniformity of multi-foci for holographic femtosecond laser parallel fabrication[J]. Opt. Precision Eng., 2013, 21(8):1936-1941.
SUN H B, MATSUO S, MISAWA H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Applied Physics Letters, 1999, 74(6):786-788.
SCRIMGEOUR J, SHARP D N, BLANFORD C F, et al.. Three-dimensional optical lithography for photonic microstructures[J]. Advanced Materials, 2006, 18(12):1557-1560.
WU D, CHEN Q D, NIU L G, et al.. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16):2391-2394.
XU B, DU W Q, LI J W, et al.. High efficiency integration of three-dimensional functional microdevices inside a micro-fluidic chip by using femtosecond laser multifoci parallel microfabrication[J]. Scientific Reports, 2016, 6:19989.
ZHENG X Y, LEE H, WEISGRABER T H, et al.. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190):1373-1377.
DE VOLDER M, HART A J. Engineering hierarchical nanostructures by elastocapillary self-assembly[J]. Angewandte Chemie International Edition, 2013, 52(9):2412-2425.
HSU J W P, TIAN Z R, SIMMONS N C, et al.. Directed spatial organization of zinc oxide nanorods[J]. Nano Letters, 2005, 5(1):83-86.
XIN Z Q, SU B, WANG J J, et al.. Continuous microwire patterns dominated by controllable rupture of liquid films[J]. Small, 2013, 9(5):722-726.
LEONG T G, RANDALL C L, BENSON B R, et al.. Tetherless thermobiochemically actuated microgrippers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3):703-708.
GULTEPE E, RANDHAWA J S, KADAM S, et al.. Biopsy with thermally-responsive untethered microtools[J]. Advanced Materials, 2013, 25(4):514-519.
BREGER J C, YOON C, XIAO R, et al.. Self-folding thermo-magnetically responsive soft microgrippers[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3398-3405.
HU Y L, LAO Z X, CUMMING B P, et al.. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(22):6876-6881.
LAO Z X, HU Y L, ZHANG C C, et al.. Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles[J]. ACS Nano, 2015, 9(12):12060-12069.
POKROY B, KANG S H, MAHADEVAN L, et al.. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies[J]. Science, 2009, 323(5911):237-240.
0
浏览量
521
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构