浏览全部资源
扫码关注微信
清华大学 精密仪器系 精密测试技术及仪器国家重点实验室, 北京 100084
叶雄英(1961-), 女, 广东广州人, 博士, 教授, 博士生导师, 1989年于日本东京大学获得博士学位, 主要研究方向为微/纳机电系统, 特别是微流控技术、微纳能源、微/纳传感器等。E-mail:xyye@mail.tsinghua.edu.cn YE Xiong-ying, E-mail:xyye@mail.tsinghua.edu.cn
[ "徐文晓(1994-), 男, 河南平舆人, 硕士研究生, 2010年于天津大学获得学士学位, 主要从事微机电系统方面的研究。E-mail:xwx14@mails.tsinghua.edu.cn" ]
收稿日期:2017-03-08,
录用日期:2017-5-12,
纸质出版日期:2017-08-25
移动端阅览
叶雄英, 徐文晓, 谢帅, 等. 面向航天医学应用的体液预处理仪研制[J]. 光学 精密工程, 2017,25(8):2083-2089.
Xiong-ying YE, Wen-xiao XU, Shuai XIE, et al. Development of a body fluids pretreatment instrument for aerospace medicine[J]. Optics and precision engineering, 2017, 25(8): 2083-2089.
叶雄英, 徐文晓, 谢帅, 等. 面向航天医学应用的体液预处理仪研制[J]. 光学 精密工程, 2017,25(8):2083-2089. DOI: 10.3788/OPE.20172508.2083.
Xiong-ying YE, Wen-xiao XU, Shuai XIE, et al. Development of a body fluids pretreatment instrument for aerospace medicine[J]. Optics and precision engineering, 2017, 25(8): 2083-2089. DOI: 10.3788/OPE.20172508.2083.
本文基于微流控技术研制了面向航天医学应用的体液预处理芯片及仪器,以便对航天员体液进行医学检测。体液预处理芯片集成了驱动液体和控制流路的微泵微阀,通过控制微泵微阀可实现从进样、不同功能的预处理到输出样品整个过程的自动操作。此外在常规样品预处理功能的基础上,还集成了排气泡功能,使预处理芯片能够在太空微重力环境下对有气泡的体液进行体液预处理。预处理仪集微泵微阀驱动机构和芯片液面位置检测机构于一体,能够实现多种体液预处理模式,且与芯片间无需任何管路及电连接,方便芯片更换。利用有限元仿真软件对预处理仪进行了航天环境下的各项力学分析,包括模态分析、加速度过载分析、正弦扫描分析及随机振动分析,得到了预处理仪机械结构在不同载荷条件下的应力分布,结果显示最大应力值为57.37 MPa,经过校核得知满足航天环境强度要求。最后,基于制作的排气混合预处理芯片进行了预处理实验,结果表明芯片的排气和混合效果良好。
Pretreatment microfluidic chip and instrument for aerospace medicine were designed and developed based on microfluidics technology to realize astronauts' body fluids (saliva
urine
blood
etc) medical assay in microgravity environment. The chips integrated with micropumps and microvalves
can automatically implement total pretreatment processes including sample introduction
different kinds of pretreatments and sample delivering out through the instrument operation. At the same time
the chips integrated a degassing function
assuring that it can be suitable to deal with the body fluids with bubbles and be used in microgravity environment. The pretreatment instrument consists of driving mechanisms of micropumps and microvalves and a detection module of liquid level
so it can be utilizable for different pretreatments without any pipe and electric connection
letting replace chips easily. All mechanical analyses in aerospace environment for instrument were conducted by finite elements simulation software
including modal analysis
overload analysis of accelerated speed
sinusoid scan analysis and random vibration analysis to obtain stress distribution of mechanical structure of pretreatment instrument in different load conditions. The results indicate that maximal stress value was 57.37 MPa
satisfying the strength requirement of space environment. Finally
pretreatment experiment was conducted based on mixed pretreatment chip of degassing mode to indicate good effect of degassing and mix of chip in the result.
宋健, 刘旭峰, 苗丹民.航天失重环境对空间定向的影响[J].航天医学与医学工程, 2006, 19(5):388-390.
SONG J, LIU X F, MIAO D M.Effects of microgravity on human spatial orientation in space flight[J].Space Medicine&Medical Engineering, 2006, 19(5):388-390. (in Chinese)
万玉民, 李莹辉, 白延强, 等.国外航天医学研究的回顾与启示[J].载人航天, 2011(5):7-13.
WAN Y M, LI Y H, BAI Y Q, et al..Review and inspiration of foreign space medicine research[J]. Manned Spaceflight, 2011(5):7-13.(in Chinese)
ABGRALL P, GUE A M. Lab-on-chip technologies:making a microfluidic network and coupling it into a complete microsystem-a review[J]. Journal of Micromech. and Microeng., 2007, 17(5):15-49.
施镠佳, 谭映军, 董景新, 等.空间培养芯片系统的弹性膜驱动样品更换[J].光学 精密工程, 2015, 23(5):1340-1346.
SHI L J, TAN Y J, DONG J X, et al..Elastic membrane actuated sample replacement for space cell culture microchips[J].Opt. Precision Eng., 2015, 23(5):1340-1346. (in Chinese)
赵莹莹, 李勤, 葛洋, 等.微流控芯片在血液检验中的应用及航天医学应用前景分析[J].航天医学与医学工程, 2012, 25(4):307-312.
ZHAO Y Y, LI Q, GE Y, et al.. Application of microfuidic chip in blood analysis and its prospects in space medicine[J]. Space Medicine & Medical Engineering, 2012, 25(4):307-312. (in Chinese)
JAKE M, NORM W, ANDREW S, et al.. Rapid culture-independent microbial analysis aboard the international space station[J]. Astrobiology, 2009, 9(8):759-775.
ZHENG W, WANG Z, ZHANG W, et al.. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip cμLture of mammalian cells[J]. Lab on a Chip, 2010, 10(21):2906-2910.
MENG D D, KIM J, KIM C J. A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices[J]. Journal of Micromechanics and Microengineering, 2006, 16(2):419.
KARLSSON J M, HARALDSSON T, SANDSTROM N, et al.. On-chip liquid degassing with low water loss[C]. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010, 10:1790-1792.
XU J, VAILLANT R, ATTINGER D. Use of a porous membrane for gas bubble removal in microfluidic channels:physical mechanisms and design criteria[J]. Microfluidics and Nanofluidics, 2010, 9(4-5):765-772.
吕超, 孙安信, 车英, 等.离轴反射式光学系统结构随机振动响应与疲劳分析[J].光学 精密工程, 2016, 24(7):1661-1668.
LV CH, SUN A X, CHEN Y, et al.. Random vibration and fatigue analysis of off-axis reflective optical system structures[J].Opt. Precision Eng., 2016, 24(7):1661-1668(in Chinese)
0
浏览量
890
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构