浏览全部资源
扫码关注微信
1.哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
2.哈尔滨工业大学 空间光通信技术研究中心, 黑龙江 哈尔滨 150001
3.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
于志亮(1987-), 男, 黑龙江同江人, 博士研究生, 2010年、2012年于哈尔滨工业大学分别获得学士、硕士学位, 主要从事空间光通信星间链路稳定性研究。E-mail:yuzl@hit.edu.cn YU Zhi-liang, E-mail:yuzl@hit.edu.cn
收稿日期:2016-11-02,
录用日期:2017-1-16,
纸质出版日期:2017-08-25
移动端阅览
于志亮, 王岩, 曹开锐, 等. 压电陶瓷执行器迟滞补偿及复合控制[J]. 光学 精密工程, 2017,25(8):2113-2120.
Zhi-liang YU, Yan WANG, Kai-rui CAO, et al. Hysteresis compensation and composite control for Piezoelectric actuator[J]. Optics and precision engineering, 2017, 25(8): 2113-2120.
于志亮, 王岩, 曹开锐, 等. 压电陶瓷执行器迟滞补偿及复合控制[J]. 光学 精密工程, 2017,25(8):2113-2120. DOI: 10.3788/OPE.20172508.2113.
Zhi-liang YU, Yan WANG, Kai-rui CAO, et al. Hysteresis compensation and composite control for Piezoelectric actuator[J]. Optics and precision engineering, 2017, 25(8): 2113-2120. DOI: 10.3788/OPE.20172508.2113.
快速倾斜镜是星间激光通信终端精瞄系统的核心部件,其驱动装置为压电陶瓷执行器,而压电陶瓷具有迟滞特性,其严重影响了快速倾斜镜的定位精度,进而对星间通信链路的稳定性造成不利影响。为解决这一问题,本文设计了一种改进Prandtl-Ishlinskii(P-I)模型对压电陶瓷执行器进行建模。在此基础上,提出了压电陶瓷执行器前馈线性化方法,以对迟滞特性进行前馈逆补偿。接着,提出了一种结合改进的P-I模型与增量式PID算法的复合控制算法,并在DSP中实现了该复合控制算法。最后,在试验平台上对该算法进行了验证。结果显示:当分别对系统输入10Hz和100Hz减幅正弦、等幅正弦曲线时,模型误差在0.59%以内,在输入同频100 Hz以下的减幅正弦曲线时,传统PID算法的最大误差为59.31
μ
rad,而该复合算法的最大误差为14.22
μ
rad。实验数据表明,本文复合控制方法的动态跟踪性能明显优于传统PID方法,改进Prandtl-Ishlinskii(P-I)模型可以精确描述压电陶瓷的迟滞特性。本文设计的复合控制方法满足实际应用对快速倾斜镜的要求。
Fast Steering Mirror (FSM) is the core part in terminal fine aiming system of inter-satellite laser communication. As the driving device for FSM
Piezoelectric actuator's (PEA) hysteresis characteristics seriously affect FSM's position accuracy
and therefore have adverse influence on stability of inter-satellite communication link. In order to solve this problem
a modified Prandtl-Ishlinskii (MPI) model was proposed to describe PEA. On this basis
a feed-forward linearization approach for PEA was presented to achieve feed-forward inverse compensation for hysteresis. Meanwhile
a composite control method was developed by combining the MPI model and the incremental PID control algorithm
then the composite control algorithm was implemented in DSP later. At last
the performance of proposed algorithm was verified on test platform. The experimental results indicate that when system was input with damped sinusoidal and constant amplitude sinusoidal curves of 10 Hz and 100 Hz respectively
model error was within 0.59%. Under damped sinusoidal input curve of same frequency under 100Hz
the greatest error of traditional PID algorithm was 59.31
μ
rad
and that of proposed composite algorithm was 14.22
μ
rad. Experimental data shows that MPI model can accurately depict hysteresis characteristics of PEA and corresponding composite control method has obviously better dynamic tracking performance than traditional PID method
which can satisfy requirements of practical application to FSM.
HAMID H.深空光通信[M].北京:清华大学出版社, 2009:283-296. HAMID H. Deep Space Optical Communication[M]. Beijing:Tsinghua University Press, 2009:283-296. (in Chinese)
黄健, 张鹏, 邓科, 等.星地相干激光通信中的自适应光学系统边界参数设计[J].光学 精密工程, 2014, 22(5):1204-1211.
HUANG J, ZHANGP, DENG K, et al.. Boundary parameters of adaptive optical system in satellite to ground coherent laser communication system[J]. Opt. Precision Eng., 2014, 22(5):1204-1211. (in Chinese)
GREGORY M, HEINE F, KAMPFNER H, et al.. Commercial optical inter-satellite communication at high data rates[J]. Optical Engineering, 2012, 53(3):031202.
TOYOSHINA M, ARAKI K. In-orbit measurement of short term attitude and vibrational environment on the engineering test satellite Ⅵ using laser communication equipment[J]. Optical Engineering, 2001, 40(5):827-832.
KIM I I, RILEY B, WONG N M. Lessons learned from the STRV-2 satellite-to-ground lasercom experiment[C]. Conference on Free-Space Laser Communication Technologies Ⅻ, 2001, 24-25.
ARVIZU A, SANTOS J, DOMINGUEZ E, et al.. ATP subsystem for optical communications on a cubesat[C]. 2015 IEEE International Conference on Space Optical Systems and Applications, 2015:1-5.
李锐, 李洪祚, 唐雁峰, 等.空间光通信复合轴APT系统[J].红外与激光工程, 2011, 40(7):1333-1336.
LI R, LI H Z, TANG Y F, et al..Compound-axis APT system in space optical communication[J]. Infrared and Laser Engineering, 2011, 40(7):1333-1336.(in Chinese)
卢宁, 柯熙政, 张华.自由空间激光通信中APT粗跟踪研究[J].红外与激光工程, 2010, 39(5):943-949.
LU N, KE X ZH, ZHANG H. Research on APT coarse tracking in free space laser communication[J]. Infrared and Laser Engineering, 2010, 39(5):943-949. (in Chinese)
亓波, 陈洪斌, 任戈, 等. 100km量子纠缠分发实验捕获跟踪技术[J].光学 精密工程, 2013, 21(6):1628-1634.
QI B, CHEN H B, REN G, et al.. APT technology for 100-kilometer quantum entanglement distribution experiment[J]. Opt. Precision Eng., 2013, 21(6):1628-1634. (in Chinese)
袁刚, 张小波, 王代华, 等.压电式快速控制反射镜的迟滞特性及线性化[J].光学 精密工程, 2015, 23(6):1650-1656.
YUAN G, ZHANG X B, WANG D H, et al.. Hysteresis and linearization of piezoelectric fast steering mirror[J]. Opt. Precision Eng., 2015, 23(6):1650-1656. (in Chinese)
王钰锋, 郭咏新, 毛剑琴.压电作动器的率相关迟滞建模与跟踪控制[J].光学 精密工程, 2014, 22(3):616-625.
WANG Y F, GUO Y X, MAO J Q. Rate-dependent modeling and tracking control of piezoelectric actuators[J]. Opt. Precision Eng., 2014, 22(3):616-625. (in Chinese)
LIU Y F, SHAN J J, QI N M. Creep modeling and identification for piezoelectric actuators based on fractional-order system[J]. Mechatronics, 2013, 23(SI):840-847.
ALJANAIDEH O, JANAIDEH M AI, RAKOTONDRABE M. Inversion-free feedforward dynamic compensation of hysteresis nonlinearities in piezoelectric micro/nano-positioning actuators[C]. 2015 IEEE International Conference on Robotics and Automation(ICRA), 2015:2673-2678.
MYNDERSE J A, CHIU GTC. Two-degree-of-freedom hysteresis compensation for a dynamic mirror actuator[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):29-37.
BIGGIO M, OLIVERI A, STELLINO F, et al.. A circuit model of hysteresis and creep[J]. IEEE Transactions on Circuits and Systems, 2015, 62(5):501-505.
IYER R V, TAN X B, KRISHNAPRASAD P S. Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators[J]. IEEE Transactions on Automatic Control, 2005, 50(6):798-810.
XIAO S L, LI Y M. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model[J]. IEEE Transactions on Control Systems Technology, 2012, 99:1-9.
XU Q S. Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9):3927-3937.
崔玉国, 孙宝元, 董维杰, 等.压电陶瓷执行器迟滞与非线性成因分析[J].光学 精密工程, 2003, 11(3):270-275.
CUI Y G, SUN B Y, DONG W J, et al..Causes for hysteresis and nonlinearity of piezoelectric ceramic actuators[J].Opt. Precision Eng., 2003, 11(3):270-275.(in Chinese)
0
浏览量
470
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构